Дальномерный метод. Радиотехнические методы определения местоположения объектов

По совокупности измеряемых геометрических параметров системы определения местоположения источников ЭМИ подразделяются :

· на триангуляционные (угломерные, пеленгационные);

· разностно-дальномерные;

· угломерно-разностно-дальномерные.

Вид и количество измеряемых геометрических величин определяют пространственную структуру системы определения местоположения источника ЭМИ: количество пространственно разнесенных приемных пунктов сигналов источника ЭМИ и геометрию их расположения.

Триангуляционный (угломерный, пеленгационный) метод основан на определении направлений (пеленгов) на источник ЭМИ в двух точках пространства с помощью радиопеленгаторов, разнесенных на базу d (рис. 18,а).

Рис. 18. Пояснение триангуляционного метода определения местоположения источника ЭМИ на плоскости (а) и в пространстве (б)

Если источник ЭМИ располагается в горизонтальной или вертикальной плоскости, то для определения его местоположения достаточно измерить два угла азимута ц1 и ц2 (или два угла места). Местоположение источника ЭМИ определяется точкой пересечения прямых О1И и О2И - двух линий положения.

Для определения местоположения источника в пространстве измеряют углы азимута ц а1 и ц а2 в двух разнесенных точках О1 и О2 и угол места цм1 в одной из этих точек или, наоборот, углы места цм1 и цм2 в двух точках приема и угол азимута ц а1 в одной из них (рис. 18,б).

Расчетным путем может быть определена дальность от одной из приемных точек до источника по измеренным углам и известной величине базы d:

отсюда приравняем два выражения для h:

Таким образом, дальность до источника

Триангуляционный метод прост в технической реализации. Поэтому широко применяется в системах радио- и РТР, в пассивных радиолокационных разнесенных системах при обнаружении и определении координат излучающих объектов.

Существенным недостатком триангуляционного метода является то, что при увеличении количества источников ЭМИ, находящихся в зоне действия радиопеленгаторов, могут происходить ложные обнаружения несуществующих источников (рис. 19). Как видно из рис.19, наряду с определением координат трех истинных источников И1, И2 и И3 обнаруживаются и шесть ложных источников ЛИ1, …, ЛИ6. Исключить ложные обнаружения при применении триангуляционного метода можно путем получения избыточной информации о пеленгуемых источниках - увеличением количества разнесенных радиопеленгаторов или опознаванием принадлежности получаемой информации к определенному источнику. Опознавание может быть проведено при сравнении сигналов, принимаемых радиопеленгаторами, по несущей частоте, периоду следования и длительности импульсов

Рис. 19.

Дополнительную информацию об источниках получают и за счет взаимно корреляционной обработки сигналов, принимаемых в разнесенных точках пространства.

Устранение ложных обнаружений при применении триангуляционного метода возможно также за счет получения данных о разности дальностей от источника излучения до пунктов приема (пунктов расположения радиопеленгаторов). Если точка пересечения линий пеленгов не лежит на гиперболе, соответствующей разности дальностей, то она является ложной.

Разностно-дальномерный метод определения местоположения основан на измерении с помощью РЭС разности дальностей от источника ЭМИ до пунктов приема, разнесенных в пространстве на расстояние d. Местоположение источника на плоскости находится как точка пересечения двух гипербол (две разности дальностей, измеренные в трех приемных пунктах), принадлежащих различным базам А1А2, A2A3 (рис. 20). Фокусы гипербол совпадают с точками расположения пунктов приема.

Рис. 20.

Пространственное положение источников ЭМИ определяется по трем разностям дальностей, измеряемым в трех-четырех приемных пунктах. Местоположение источника - точка пересечения трех гиперболоидов вращения.

Угломерно-разностно-дальномерный метод определения местоположения предполагает измерение с помощью РЭС разности дальностей от источника ЭМИ до двух разнесенных приемных пунктов и измерение направления на источник в одном из этих пунктов.

Для определения координат источника на плоскости достаточно измерить азимут ц и разность дальностей АД от источника до точек приема. Местоположение источника определяется точкой пересечения гиперболы и прямой.

Для определения положения источника в пространстве необходимо дополнительно измерить в одной из точек приема угол места источника ЭМИ. Местоположение источника находится как точка пересечения двух плоскостей и поверхности гиперболоида.

Ошибки определения местоположения источника ЭМИ на плоскости зависят от ошибок измерения двух геометрических величин:

· двух пеленгов в триангуляционных системах;

· двух разностей дальностей в разностно-дальномерных системах;

· одного пеленга и одной разности дальностей в угломерно-разностно-дальномерных системах.

При центрированном гауссовском законе распределения ошибок определения линий положения среднеквадратическое значение ошибки определения местоположения источника:

где - дисперсии ошибок определения линий положения; r - коэффициент взаимной корреляции случайных ошибок определения линий положения Л1 и Л2; г - угол пересечения линий положения.

При независимых ошибках определения линий положения r = 0.

При триангуляционном методе определения местоположения источника

Среднеквадратическая ошибка определения местоположения

При применении идентичных радиопеленгаторов

Наибольшая точность будет при пересечении линий положения под прямым углом (г = 90°).

При оценке ошибок определения местоположения источника в пространстве необходимо рассматривать ошибки измерения трех геометрических величин. Ошибка определения местоположения зависит в этом случае от взаимной пространственной ориентации поверхностей положения. Наивысшая точность определения положения будет при пересечении нормалей к поверхностям положения под прямыми углами.

В общем случае мгновенное положение объекта в пространстве определяется тремя координатами в той или иной системе координат. Для характеристики движения объекта необходимы также производные координат , число которых зависит от сложности траектории движения объекта. На практике чаще всего используют производные не выше второго порядка, т. е. скорость объекта и ускорение . При этом обычно имеют в виду координаты и их производные для центра тяжести объекта. Часто измеряют лишь координаты, а их производные получают путем дифференцирования. Возможно также непосредственно оценить составляющую относительной скорости объекта, перпендикулярную фронту приходящей к антенне электромагнитной волны, путем измерения доплеровского смещения частоты. Интегрированием скорости объекта можно получить соответствующую координату, а ее дифференцированием - ускорение.

При активной радиолокации с учетом двустороннего распространения сигнала (от РЛС до цели и обратно) частота отраженного сигнала вследствие эффекта Доплера отличается от частоты излучаемого на значение с , пропорциональное радиальной составляющей относительной скорости , которая может быть вычислена по формуле

если известна длина волны излучаемого сигнала и измерено значение доплеровского смещения частоты . Следует заметить, что формула (7.2) точна лишь при значениях скорости , много меньших скорости распространения радиоволн , когда можно не учитывать релятивистский эффект.

При радиолокационном определении координат в основу положено свойство радиоволн распространяться в однородной среде прямолинейно и с постоянной скоростью. Скорость распространения радиоволн зависит от электромагнитных свойств среды и составляет в свободном пространстве (вакууме) . Там, где это не вызывает существенных погрешностей, обычно берут приближенное значение скорости . Постоянство скорости и прямолинейность распространения радиоволны позволяют рассчитать дальность D от РЛС до объекта путем измерения времени прохождения сигнала от РЛС до объекта и обратно:

Свойство прямолинейности распространения радиоволн является основой радиотехнических методов измерения угловых координат по направлению прихода сигнала от объекта. При этом используются направленные свойства антенны.

Радиотехнические методы позволяют также непосредственно найти разность дальностей от объекта до двух разнесенных передатчиков путем измерения разности времени приема их радиосигналов на объекте, определяющем свое местоположение.

В радионавигации при нахождении местоположения объекта вводят понятия радионавигационного параметра, поверхностей и линий положения.

Радионавигационным параметром (РНП) называют физическую величину, непосредственно измеряемую РНС (расстояние, разность или сумма расстояний, угол).

Поверхностью положения считают геометрическое место точек в пространстве, имеющих одно и то же значение РНП.

Линия положения есть линия пересечения двух поверхностей положения. Местоположение объекта задается пересечением трех поверхностей положения или поверхности и линии положения.

В соответствии с видом непосредственно измеряемых координат различают три основных метода определения местоположения объекта: угломерный, дальномерный и разностно-дальномерный. Широко применяют также комбинированный угломерно-дальномерный метод.

Угломерный метод. Этот метод является самым старым, поскольку возможность определения направления прихода радиоволн была установлена А. С. Поповым еще в 1897 г. при проведении опытов по радиосвязи на Балтийском море.

При этом используются направленные свойства антенны при передаче или приеме радиосигнала. Существует два варианта построения угломерных систем: радиопеленгаторный и радиомаячный. В радиопеленгаторной системе направленной является антенна приемника (радиопеленгатора), а передатчик (радиомаяк) имеет ненаправленную антенну. При расположении радиопеленгатора (РП) и радиомаяка (РМ) в одной плоскости, например на поверхности Земли, направление на маяк характеризуется пеленгом а (рис. 7.1, а). Если пеленг отсчитывают от географического меридиана (направление север-юг), то его называют истинным пеленгом или азимутом. Часто азимутом считают угол в горизонтальной плоскости, отсчитанный от любого направления, принятого за нулевое. Определение направления производят в месте расположения приемника, который может быть как на Земле, так и на объекте. В первом случае пеленгование объекта осуществляют с Земли и при необходимости измеренное значение пеленга передают на объект (борт) по каналу связи. При расположении радиопеленгатора на объекте пеленг на радиомаяк измеряют непосредственно на борту.

В радиомаячной системе (рис. 7.1,б) используют радиомаяк с направленной антенной и ненаправленный приемник. В этом случае в месте расположения приемника измеряют обратный пеленг относительно пулевого направления, проходящего через точку, в которой расположен радиомаяк. Часто применяют маяк с вращающейся ДНА. В момент совпадения оси ДНА с нулевым направлением (например, северным) вторая, ненаправленная, антенна РМ излучает специальный нулевой (северный) сигнал, который принимается приемником системы и является началом отсчета углов. Фиксируя момент совпадения оси вращающейся ДНА маяка с направлением на приемник (например, по максимуму сигнала), можно найти обратный пеленг , который при равномерном вращении ДНА маяка пропорционален промежутку времени между приемом нулевого сигнала и сигнала в момент пеленга.

В этом случае приемник упрощается, что важно при его расположении на борту. Поверхностью положения угломерной РНС является вертикальная плоскость, проходящая через линию пеленга.

При использовании наземных РП и РМ линией положения будет ортодромия - дуга большого круга, проходящего через пункты расположения РП и РМ. Она является линией пересечения поверхности положения с поверхностью Земли. Истинный пеленг (ИП) - угол между меридианом и ортодромией. При расстояниях, малых по сравнению с радиусом Земли, ортодромия аппроксимируется отрезком прямой линии. Для определения местоположения РП (рис. 7.1, в) необходим второй РМ. По двум пеленгам и можно найти местоположение РП как точку пересечения двух линий положения (двух ортодромий на земной поверхности). Если система расположена в пространстве, то для определения местоположения РП необходим третий радиомаяк. Каждая пара (РП - РМ) позволяет найти лишь поверхность положения, которая будет в данном случае плоскостью. При определении местоположения приемника предполагают, что координаты РМ известны.

В морской и воздушной навигации вводят понятие курса - утла между продольной осью корабля (проекцией продольной оси самолета на поверхность Земли) и направлением начала отсчета углов, в качестве которого выбирают географический или магнитный меридиан, а также линию ортодромии. Соответственно такому выбору различают истинный, магнитный и ортодромический курсы. Для летательного аппарата (ЛA) в качестве третьей координаты при нахождении местоположения используют высоту полета -абсолютную (отсчитываемую от уровня Балтийского моря), барометрическую (отсчитываемую по барометрическому высотомеру относительно уровня, принятого за нулевой) и истинную (кратчайшее расстояние по вертикали до поверхности под , измеряемое радиовысотомером). При применении радиовысотомера местоположение ЛA определяется уже комбинацией угломерного и дальномерного методов измерения координат.

Дальномерный метод. Этот метод основан на измерении расстояния D между точками излучения и приема сигнала по времени его распространения между этими точками.

В радионавигации дальномеры работают с активным ответным сигналом, излучаемым антенной передатчика ответчика (рис. 7.2, а) при приеме запросного сигнала. Если время распространения сигналов запроса и ответа одинаково, а время формирования ответного сигнала в ответчике пренебрежимо мало, то измеряемая запросчиком (радиодальномером) дальность . В качестве ответного может быть использован также и отраженный сигнал, что и делается при измерении дальности РЛС или высоты радиовысотомером.

Поверхностью положения дальномерной системы является поверхность шара радиусом D. Линиями положения на фиксированной плоскости либо сфере (например, на поверхности Земли) будут окружности, поэтому иногда дальномерные системы называют круговыми. При этом местоположение объекта определяется как точка пересечения двух линий положения. Так как окружности пересекаются в двух точках (рис. 7.2,б) то возникает двузначность отсчета, для исключения которой применяют дополнительные средства ориентирования, точность которых может быть невысокой, но достаточной для достоверного выбора одной из двух точек пересечения. Поскольку измерение времени задержки сигнала может производиться с малыми погрешностями, дальномерные РНС позволяют найти координаты с высокой точностью. Радиодальномерные методы начали применяться позже угломерных. Первые образцы радиодальномеров, основанные на фазовых измерениях временной задержки, были разработаны в СССР под руководством Л. И. Мандельштама, Н. Д. Папалекси и Е. Я. Щеголева в 1935-1937 гг. Импульсный метод измерения дальности был применен в импульсной РЛС, разработанной в 1936-1937 гг. под руководством Ю. Б. Кобзарева.

Разностно-дальномерный метод. С помощью приемоиндикатора, расположенного на борту объекта, определяют разность времени приема сигналов от передатчиков двух опорных станций: . Станцию А называют ведущей, так как с помощью ее сигналов осуществляется синхронизация работы ведомой станции В. Измерение разности расстояний, пропорциональной временному сдвигу сигналов от станции А и В, позволяет найти лишь поверхность положения, соответствующую этой разности и имеющую форму гиперболоида. Если приемоиндикатор и станции А и В расположены на поверхности Земли, то измерение позволяет получить линию положения на земной поверхности в виде гиперболы с .

Для двух станций можно построить семейство гипербол с фокусами в точках расположения станций А и В. Расстояние между станциями называют базой. Для заданной базы семейство гипербол наносят на карту заранееи оцифровывают. Однако одна пара станций позволяет определить лишь линию положения, на которой расположен объект. Для нахождения его местоположения необходима вторая пара станций (рис. 7.3), база которой должна быть расположена под углом к базе первой пары. Обычно ведущая станция А является общей и синхронизирует работу обеих ведомых станций и . Сетка линий положения такой системы образуется двумя семействами пересекающихся гипербол, позволяющих найти местоположение приемоиндикатора (ПИ), расположенного на борту объекта.

Точность разностно-дальномерной системы выше точности угломерной и приближается к точности дальномер-ной. Но основным ее преимуществом является неограниченная пропускная способность, так как наземные станции могут обслуживать неограниченное число ПИ, находящихся в пределах дальности действия системы, поскольку на борту определяющегося объекта нет необходимости иметь передатчик, как в дальномерной системе. Следует заметить, что асимптотами гипербол являются прямые линии, проходящие через центр базы каждой пары станций системы Таким образом, на расстояниях, в несколько раз превышающих длину базы, линии положения вырождаются в прямые, в результате чего разностно-дальномерная система может быть использована как угломерная.

В зависимости от видов сигналов наземных станций и метода измерения временного сдвига сигналов принимаемых ПИ различают импульсные, фазовые и импульсно-фазовые разностно-дальномерные РНС.

Принцип импульсной разностно-дальномерной системы был предложен советским инженером Э. М. Рубчинским в 1938 , но широкое распространение такие системы получили лишь к концу второй мировой войны, когда были разработаны методы точного измерения временного положения импульсов. Первая фазовая разностно-дальномерная система (фазовый зонд) была создана в СССР в 1938 г. В дальнейшем этот принцип был использован в системах «Декка», «Координатор» и др.

Комбинированный угломерно-дальномерный метод. Этот метод позволяет найти местоположение объекта из одной точки. Комбинированный метод обычно применяют в РЛС, которые измеряют наклонную дальность D, азимут и угол места Р (рис. 7.4). Углом места называют угол между направлением на объект и горизонтальной плоскостью (поверхностью Земли). Азимут отсчитывают от направления север - юг или другого направления, принятого за начальное. Путем пересчета основных координат можно найти также высоту , горизонтальную дальность и ее проекции на направление север - юг и запад - восток.

Определение местоположения объекта из одной точки и с помощью одной станции является большим преимуществом комбинированного метода, который широко используется также в радиосистемах ближней навигации.

Рассмотренные методы определения местоположения объекта относительно точек с известными координатами (радионавигационные точки РНТ) с помощью поверхностей и линий положения называют позиционными.

Кроме позиционных методов в навигации применяют методы счисления пути интегрированием измеренных скорости (доплеровским или воздушным измерителем) или ускорения (акселерометром), а также обзорно-сравнительные методы, основанные на сравнении телевизионных, радиолокационных и других изображений местности с соответствующими картами.

Используют и корреляционно-экстремальные методы навигации, основанные на определении структуры какого-либо физического поля,характерного для данной местности (например, рельефа), и сравнении параметров этого поля с соответствующими параметрами, хранящимися в запоминающем устройстве РНС. Преимуществами этих методов являются автономность, малое влияние помех и отсутствие накапливающихся погрешностей при определении местоположения объекта.

Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем может быть использован в космической радионавигации и геодезии. Согласно способу принимают N-канальным приемным устройством, установленным на объекте, навигационные радиосигналы спутников, определяют дальности от объектов до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генераторами объекта, а также составляющих вектора скорости путем измерения принимаемых доплеровских сдвигов частоты с использованием систем слежения за несущими. При этом в N-канальном приемном устройстве, один из которых является ведущим, а другие - ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей. Технический результат заключается в повышении точности определения координат местоположения, составляющих вектора скорости определяющегося объекта по навигационным сигналам КА СРНС; и с использованием радиосигналов наземных воздушных источников радиоизлучений, а также с использованием радиоизлучений КА других систем и имитаторов. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области космической радионавигации, геодезии и может быть использовано для определения координат местоположения и составляющих вектора скорости объектов. Известен доплеровский разностно-дальномерный способ определения координат местоположения и составляющих вектора скорости объектов по навигационным радиосигналам космических аппаратов (КА) спутниковых радионавигационных систем (СРНС), основанный на измерениях разностей топоцентрических расстояний между объектом и двумя положениями одного и того же навигационного КА (НКА) в последовательные моменты времени (П.С. Волосов, Ю.С. Дубенко и др. Судовые комплексы спутниковой навигации. Л.: Судостроение, 1976). Практической реализацией известного способа являются российская СРНС "Цикада" и американская СРНС "Транзит" - навигационные системы первого поколения. В нем интегрирование доплеровского смещения частоты принятых за интервал времени T от навигационного искусственного спутника Земли (НИСЗ) радиосигналов позволяет определить число длин волн, укладывающихся в разность расстояний от фазового центра антенны приемного устройства объекта до двух положений НИСЗ (двух положений фазового центра антенны НИСЗ): где t 1 и t 2 - время передачи временных меток НИСЗ; R 1 (t 1) и R 2 (t 2) - расстояния между фазовыми центрами антенн объекта и НИСЗ; c - скорость света; f п - частота принимаемого сигнала; f о - частота опорного сигнала, f п = f и f и +f ио +f тр +f гр +f др, где
f и - частота сигнала, излучаемого НИСЗ;
f и - нестабильность частоты излучаемого сигнала;
f ио,f тр - неизвестные сдвиги частоты, обусловленные распространением сигналов в ионосфере, тропосфере;
f гр - неизвестный сдвиг частоты, обусловленный гравитационными силами;
f др - неизвестные сдвиги частоты, обусловленные другими факторами,
f o = f и f+f o ,
где
f o - известный постоянный сдвиг частоты (частотная подставка);
f - нестабильность частоты опорного сигнала. С учетом изложенного выражение примет вид

Из выражения видно, что интегральный доплеровский сдвиг частоты определяется двумя слагаемыми. Первое слагаемое - погрешности измерений, обусловленные условиями распространения радиоволн, гравитационным полем Земли, нестабильностью частоты излучения опорного генератора и другими факторами. Они войдут в навигационное уравнение как неизвестные. Второе слагаемое является прямым измерением изменения наклонной дальности в длинах волн опорной частоты определяющегося объекта. Ошибка сложения системы слежения за несущей (ССР), которая отсутствует в рассмотренном навигационном уравнении, также входит в ошибку измерения радионавигационного параметра (РНП). Отслеживаемая функция времени - несущая частоты имеет ненулевые производные высокого порядка. Следовательно, помимо случайных ошибок (шумовых) реальный следящий контур с астатизмом конечного порядка будет иметь динамические ошибки, обусловленные наличием производных входного воздействия более высокого порядка, чем порядок астатизма системы. Уменьшение случайной ошибки системы фазовой автоподстройки частоты (ФАПЧ) ССН требует применения более инерционного контура обратной связи (сужение полосы пропускания фильтра низкой частоты), но при этом возрастают динамические ошибки ССР и наоборот. Выражая дальности через координаты прямоугольной геоцентрической системы координат, навигационное уравнение примет вид
,
где
x 1 , y 1 , z 1 , x 2 , y 2 , z 2 - координаты фазового центра антенны спутника в моменты времени t 2 и t 1 соответственно;
x 0 , y 0 , z 0 -неизвестные координаты фазового центра антенны определяющегося объекта. Как видно, три измерения разностей дальностей в четырех последовательных положениях спутника на орбите позволяют определить координаты объекта x 0 , y 0 , z 0 . В процессе измерений необходимо ждать, пока дальность до НИСЗ изменится на достаточную величину. Разностно-дальномерный способ проявляет свои достоинства на таких расстояниях (базах) между положениями НИСЗ на орбите, когда они соизмеримы с расстояниями между НКА и определяющимся объектом. В соответствии с изложенным недостатками известного способа являются
ошибки, обусловленные ССР;
ошибки за счет нестабильности частоты излучения НКА и опорного генератора;
систематические и случайные ошибки;
низкая точность определения координат местоположения и составляющих вектора скорости объектов при использовании НИСЗ на средневысоких и высоких орбитах. Известен также дальномерный способ, который принят в качестве прототипа. Практической реализацией этого способа являются СРНС второго поколения - российская Global Orbiting Navigation Sattellite System (ГЛОНАСС) и американская Global Positioning System (GPS). Геометрическим эквивалентом конечного алгоритма этого способа решения навигационной задачи является построение относительно используемых навигационных искусственных спутников Земли (НИСЗ) совокупности поверхностей положения, точка пересечения которых и является искомым положением объекта (Бортовые устройства спутниковой радионавигации. /Под ред. В.С. Шебшаевича. М.: Транспорт, 1988). Для решения навигационной задачи минимально необходимый объем функциональных зависимостей должен быть равен числу оцениваемых параметров. Определение координат местоположения объекта сводится к решению системы уравнений

где
R 1 , . . . , R 4 - результаты измерений наклонных дальностей, полученные с помощью следящей системы за задержкой (ССЗ);
x, y, z - координаты объекта в геометрической прямоугольной системе координат;
x 1 , y 1 , z 1 .... x 4 , y 4 , z 4 - координаты четырех путников, передаваемые в навигационном сообщении;
R т - разница между истинной дальностью объекта-спутника и измеренной, обусловленной сдвигом шкалы времени объекта относительно шкалы времени НИСЗ;
R 1 ,...,R 4 - погрешности измерений, обусловленные атмосферой, ионосферой, другими факторами. Для определения координат местоположения объекта необходимо, чтобы в поле зрения объекта находились одновременно четыре спутника. В результате решения этой системы уравнений определяются четыре известные: три координаты местоположения объекта (x, y, z) и поправка R т к его шкале времени (поправка к часам). Аналогичным образом, с использованием результатов измерений с помощью ССН, определяются три составляющие вектора скорости и поправки к частоте эталона частоты объекта, используемого для формирования шкалы времени:
,
где
- скорости изменения дальностей (радиальные скорости), измеренные с помощью ССН;
- составляющие вектора скорости объекта;
- составляющие вектора скорости четырех спутников;
- разница между истинной скоростью и измеренной, обусловленная расхождением частот эталонов частоты НИСЗ и объекта;
- погрешности измерений, обусловленные условиями распространения радиоволн и другими факторами. Измерение дальности в аппаратуре объекта осуществляется путем измерения временного интервала между временными отметками принимаемого от спутника кода и местного кода объекта. Эффективность данного метода определяется в основном шумовой погрешностью измерения РНП, поскольку именно шумовая погрешность ограничивает эффект компенсации сильнокоррелированных погрешностей. Для оценки шумовой погрешности используется (Бортовые устройства спутниковой радионавигации. /Под ред. В.С. Шебшаевича. М.: Транспорт, 1988) выражение

где
2 ш - дисперсия шума измерения;
- длительность элемента дальномерного кода;
c/N 0 - отношение мощности сигнала к спектральной плотности мощности шума на входе приемника;
B ССЗ - односторонняя ширина полосы ССЗ;
B ПЧ - односторонняя ширина полосы УПЧ дискриминатора;
K 1 , K 2 - постоянные параметры, зависящие от выбранного технического решения. Измерение доплеровского сдвига частоты основано на измерении приращения дальности на частоте несущей с использованием ССН. Оценка точности измерения приращения дальности определяется выражением для дисперсии фазы 2 ф схемы слежения за несущей, имеющим вид

где
- длина волны несущей;
B ССН - ширина полосы схемы слежения за несущей. Шумовая погрешность измерений приращений дальностей на частоте несущей практически на порядок меньше шумовой погрешности измерений дальностей с использованием дальномерных кодов. Дальномерный способ не позволяет, например, из-за различий в СРНС ГЛОНАСС и GPS совместно их использовать. Таким образом, недостатками известного способа, прототипа, являются
ошибки следящей системы за задержкой от отношения сигнал/шум;
ошибки следящей системы за несущей от отношения сигнал/шум;
ошибки, обусловленные условиями распространения радиоволн в ионосфере, тропосфере и другими факторами;
ошибки, обусловленные сдвигом шкалы времени объекта относительно шкал времени НИСЗ за счет нестабильности частот генераторов спутников и опорного генератора объекта;
невозможность совместного использования источников радиоизлучений систем различного назначения. Для устранения ионосферной задержки в известных способах используется аппаратурная компенсация с помощью двухчастотных измерений и компенсация с помощью поправок, рассчитываемых по априорным данным. Известный способ (прототип) характеризуется следующей совокупностью действий над принимаемыми спутниковыми радионавигационными сигналами:
прием N-канальным приемным устройством двухчастотных радиосигналов N НИСЗ;
определение дальностей от объекта до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генератором объекта;
измерение приращений дальностей путем измерения приращений фаз несущих;
определение координат местоположения объекта;
определение составляющих вектора скорости объекта. Целью изобретения является повышение точности определения координат местоположения, составляющих вектора скорости определяющегося объекта по навигационным радиосигналам КА СРНС и с использованием радиосигналов наземных воздушных источников радиоизлучений, а также с использованием радиоизлучений КА других систем и их имитаторов. Цель достигается тем, что по предлагаемому способу в N-канальном приемном устройстве, один из которых является ведущим, а другие - ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами, и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами, и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей. Дополнительными отличиями предлагаемого способа являются следующие. Ведущим и приемным устройствами определение разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом путем измерения приращений фаз несущих с использованием фазовых автоподстроек частот систем слежения за несущими навигационных радиосигналов спутников. Определение двойных разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом, путем измерения разностей частот Доплера, принятых приемными устройствами с использованием квадратурных фазовых детекторов, умножив их средние значения на мерный интервал. Приемное устройство ведущего канала принимает сигналы имитатора спутниковых сигналов. Выделение сигналов с частотами Доплера производят путем возведения принимаемых сигналов в квадрат с последующим возвратом частот на искомые с использованием делителей частот. Геометрическая интерпретация предлагаемого способа поясняется на примере созвездия четырех КА ГЛОНАСС и одного КА GPS, фиг. 1. Принимаемый приемным устройством навигационный радиосигнал КА GPS является ведущим сигналом, а канал приема приемным устройством сигналов КА ГЛОНАСС - ведомым. Соответственно навигационные сигналы КА ГЛОНАСС, приемное устройство КА являются ведомыми. В соответствии с вышеизложенным

где
- разность измеренных дальностей между каждым ведомым КА ГЛОНАСС - пользователь и между ведущим КА GPS - пользователь с использованием дальномерных кодов;
- двойные разности дальностей. Геометрическая интерпретация определения координат и составляющих вектора скорости по разностям приращений дальностей и двойных разностям приращений, измеренных с использованием приращений фаз несущих, поясняется на примере двух КА: ведущего КА и одного ведомого КА ГЛОНАСС, фиг. 2. Точками t 1 , t * , t 2 обозначены положения НИСЗ на орбите, являющиеся границами отсчетов навигационного параметра (мерный интервал). Разности приращений дальностей запишутся следующим образом соответственно:

Двойные разности приращений дальностей примут вид

Разности дальностей в квадратных скобках системы уравнений (1) проявляют свои достоинства, как это было показано выше на таких расстояниях (базах) между положениями НИСЗ на орбите, когда они соизмеримы с расстоянием между НКА и определяющимся объектом. В нашем примере базы незначительны. Для выполнения этого условия систему уравнений (2) преобразуют в тождественную систему уравнений, у которой данное условие выполняется:

Таким образом, из системы разностей дальностей для орбит НКА с тождественными параметрами орбит для созвездия из 5 НКА один GPS - ведущий, четыре ГЛОНАСС - ведомые. Окончательные системы уравнений для двойных разностей дальностей (1) и для двойных разностей приращений дальностей (3), выраженные через координаты в геометрической прямоугольной системе координат, примут вид
для двойных разностей дальностей
,
Для двойных разностей приращений дальностей
;
;
,
где
- координаты ведомых НИСЗ, передаваемые в навигационных сообщениях в моменты времени t 1 , t 2 соответственно. Аналогично с использованием результатов измерений с помощью ССН определяются составляющие вектора скорости:
;
;
,
где
- составляющие вектора скорости НИСЗ, передаваемые в навигационных сообщениях в моменты времени t 1 , t 2 соответственно. Анализируя системы навигационных уравнений двойных разностей дальностей (4), двойных разностей приращений дальностей (5) и скоростей (6) с использованием ведущего, ведомых радиосигналов НИСЗ и соответствующих приемных устройств, каналов, видим, что в уравнениях компенсируются координаты ведущего НИСЗ GPS, компенсируются также погрешности, обусловленные расхождением шкал времени и частот GPS, ГЛОНАСС относительно шкалы времени, частоты объекта. Если в навигационных уравнениях известного способа присутствуют погрешности, обусловленные ионосферой, тропосферой, то в уравнениях предлагаемого способа с использованием двойных разностей дальностей присутствуют их разности. Для обеспечения высокой точности решения навигационной задачи, обусловленной геометрическим фактором определения положения в пространстве, положение КА в пространстве выбирается таким, при котором один КА находится в зените (обеспечивая высокую точности определения положения по вертикали), а остальные КА - в горизонтальной плоскости в направлениях, отличающихся друг от друга на 120 - 180 o (обеспечивая высокую точность определения положения по горизонтали) в зависимости от количества используемых КА. Таким образом, предлагаемый способ, несмотря, например, на серьезные различия в ГЛОНАСС и GPS, в способах задания эфемерид, в компоновке суперкадров и структур кадров служебной информации, в неидентичности используемых систем отсчета пространственных координат и различии шкал времени, формируемые от различных эталонов частоты и времени, позволяет совместное их использование, не проводя их в требуемое соответствие, т.е. без всяких организационных материальных доработок и доработок математического обеспечения систем. Принимая радионавигационные сигналы КА ГЛОНАСС и GPS параллельно или последовательно, используя мультиплексное приемное устройство или многоканальное, а также беря в одной серии измерений в качестве ведущих КА GPS, а в качестве ведомого КА ГЛОНАСС и наоборот в другой серии, можно определить координаты и составляющие вектора скорости объекта как в координатно-временной системе GPS, так и в координатно-временной системе ГЛОНАСС, не приводя их в соответствие. Совместное использование систем обеспечит определенную универсальность навигационных определений, надежность и достоверную обсервацию за счет сравнения результатов определений по разным системам для выявления случаев нарушения функционирования одной из систем. Под надежностью навигационного обеспечения понимается способность навигационной системы в любой момент времени обеспечить объект информацией для определения местоположения с точностью, гарантированной для рабочей зоны. Под достоверностью понимается способность навигационной системы выявлять отклонения в своем функционировании, приводящие к ухудшению точности определения координат и составляющих вектора скорости объекта за пределы заданных допустимых значений. Если система навигационных уравнений двойных разностей предлагаемого способа с использованием измерений с помощью дальномерных кодов (1) является по сути системой уравнений разностей дальностей, то система навигационных уравнений двойных разностей приращений дальностей, измеренных с помощью приращений фаз несущих на мерном интервале (2), является системой уравнений двойных разностей дальностей и также позволяет решить навигационную задачу - определить координаты местоположения и составляющие вектора скорости объекта. Поскольку, как это было показано выше, точность измерений двойных разностей приращений фаз на несущих частотах на порядок выше точности измерений разностей временных сдвигов кодовых последовательностей, то и точность решения навигационной задачи с использованием приращений фаз также выше точности решения с использованием разностей дальностей. В целях дальнейшего повышения точности решения навигационной задачи с использованием приращений фаз на несущих частотах за счет исключений из измерений погрешности, обусловленной ССН, двойные разности приращений дальностей производятся путем выделения из принятых сигналов с частотами, равными разностям частот Доплера, с использованием квадратурных фазовых детекторов, на первые выходы которых поступают сигнал ведущего, а на вторые входы - сигналы ведомых приемных устройств, затем производятся определение разностей приращений фаз путем умножения средних значений разностей частот Доплера на мерный интервал и определения двойных разностей приращений фаз путем их взаимного вычитания. Изложенное соответствует аппаратурной реализации, блок-схема которой приведена на фиг. 3. Выделение сигналов с частотами Доплера при приеме фазомодулированных сигналов с подавленными несущими производится путем возведения их в квадрат и фильтрации с последующим возвратом частот на искомые с использованием делителей частот. Сигналы с выходов устройств свертки, которые поступают на системы ФАПЧ ССН приемных устройств фиг. 3, в режиме синхронизма по задержкам дальномерных кодов являются значительно узкополосными сигналами - восстановленные несущие, промодулированные цифровой информацией. Диапазоны изменения значений несущих определяются в основном доплеровским смещением ( 50 кГц на частотах КА GPS, ГЛОНАСС), а ширина спектра сигнала - спектром цифровой информации ( 100 Гц). Сигналы ФАПЧ могут отслеживать сигналы, соответствующие только одной из двух боковых полос, и, следовательно, обладают энергетическими потерями, равными 3 дБ. Поэтому подключение устройств выделения из принятых навигационных сигналов, равных разностям частот Доплера предлагаемого способа фиг. 3, исключающих вторые боковые полосы, не вносит дополнительные энергетические потери. Принятые и преобразованные спутниковые навигационные радиосигналы, поступающие на квадратурные фазовые детекторы, несут уже в себе сдвиги частот, обусловленные нестабильностями генераторов КА, объекта, обусловленные условиями распространения радиоволн (ионосфера, тропосфера), сдвиги, обусловленные приемными трактами и другими факторами. Поэтому в процессе выделений колебаний с частотами, равными разностям частот Доплера предлагаемого способа, перечисленные частотные отклонения частично компенсируют друг друга. И уже при тройных разностях вклад их в точность навигационных определений будет незначительным. При использовании для решений навигационной задачи приращения фаз влияния приращений фаз на точность за счет ионосферы, тропосферы для крайних точек мерного интервала отличаются мало и при образовании вторых разностей практически устраняются. Особым отличительным признаком предлагаемого способа является то, что при измерениях разностей приращений фаз с использованием колебаний, равных разностям частот Доплера, в качестве ведущего сигнала можно использовать сигнал любого источника излучения: наземного, воздушного базирования или излучения КА других систем. В этом случае основное требование к приемному устройству определяющегося объекта это возможность принять сигнал и преобразовать его таким образом, чтобы он обеспечил работу блока квадратурных фазовых детекторов. Причем координаты источников излучения, их временные системы, нестабильности частот и приращения частот за счет распространения радиоволн знать не требуется. Они компенсируются в процессе навигационных измерений. Самым оптимальным вариантов аппаратурной реализации предлагаемого способа является вариант, когда в качестве ведущего сигнала приемного устройства объекта используются сигналы несущих, промодулированные дальномерными кодами имитаторов. Имитаторы позволяют оптимизировать скорость изменения частот конкретно для каждого типа навигационных систем и тем самым обеспечить их оптимальную работу с точки зрения получения потенциально возможной точности определения координат местоположения и составляющие вектора скорости объекта. Отличительные признаки предложенного способа:
прием N-канальным приемным устройством навигационных радиосигналов N спутников, один из каналов которого является ведущим, а другие - ведомыми;
определение разностей приращений дальностей и разностей дальностей путем вычитания из измеренных приращений фаз несущих и временных сдвигов кодовых последовательностей ведомыми приемными устройствами приращения фазы несущих и временного сдвига кодовой последовательности, измеренных ведущим приемным устройством;
определение двойных разностей дальностей приращений дальностей и дальностей путем взаимного вычитания разностей двойных разностей приращений фаз несущих и разностей временных сдвигов кодовых последовательностей в последовательности, определяемой геометрическим фактором определения положения в пространстве;
использование разностей двойных разностей приращений фаз несущих для определения координат и составляющих вектора скорости объекта;
измерение двойных разностей приращений дальностей путем выделения сигналов с частотами, равными разностям частот Доплера, принятых ведущим и каждым ведомым каналами приемного устройства с использованием квадратурных фазовых детекторов, на первые входы которых поступают сигналы ведущего канала, а на вторые входы - сигналы ведомых, и умножением их средних значений на мерный интервал;
прием ведущим каналом приемного устройства радиосигналов наземных, воздушных источников радиоизлучений и радиоизлучения космических аппаратов других систем;
использование ведущими каналами приемного устройства в качестве сигнала имитаторов;
выделение сигналов с частотами Доплера при приеме фазомоделированных сигналов с подавленными несущими путем возведения их в квадрат и фильтрации с последующим возвратом частот на искомые с использованием делителей частот. Таким образом, предложенный способ определения координат местоположения и составляющих вектора скорости объектов по радиосигналам КА СРНС обладает новизной, существенными отличиями и дает при использовании положительный эффект, заключающийся в повышении точности, надежности и достоверности навигационных определений спутниковых и наземных радионавигационных систем.

Сравнительная оценка разностно-дальномерного и угломерного(пеленгационного) методов определения координат ИРИ

На практике для определения координат источников радиоизлучений (ИРИ) применяют угломерный (пеленгационный), дальномерный, суммарно-дальномерный, разностно-дальномерный методы, а также их комбинации .

Из описания указанных методов можно выделить их характерные особенности.

Так, для реализации дальномерного и суммарно-дальномерного метода на приемных пунктах должна быть известна структура сигнала. В связи с этим среди перечисленных выше типов РЭС такие методы могут быть применены лишь для местоопределения абонентских терминалов (АТ) сотовой связи, поскольку их функционирование принципиально возможно только под управлением базовой станции, которая в процессе радиообмена всегда измеряет дальность до АТ.

Для угломерного (УМ) и разностно-дальномерного методов (РДМ) не требуются информация о точной структуре сигнала, а достаточно указать лишь область спектра, в которой сосредоточена основная энергия сигнала. Причем, все больше производителей техники определения координат ИРИ обращают внимание на РДМ, в связи с появлением недорогих компактных вычислительных ресурсов и усовершенствованных технологий радиоприема, доступностью каналов передачи данных, а также наличием точных распределяемых сигналов хронирования.

В таблице приводятся результаты анализа достоинств и недостатков традиционных вариантов построения РДМ (с жесткой синхронизацией периферийных приемных пунктов) в сравнении с УМ, заимствованные из отчета Международного союза электросвязи МСЭ-R SM.2211.

Таблица

Более простые требования к антенне

Антенна является дешевой, несложной и может иметь небольшой размер.

Приемники РДМ могут использовать одну простую антенну (например, несимметричный или симметричный вибратор). Дополнительным преимуществом является то, что можно изготовить малозаметную антенну небольшого размера.

Более простые требования к выбору места и калибровке

Для РДМ требования к выбору места являются менее жесткими, чем для УМ, и калибровка практически не требуется.

В результате развертывание оборудования РДМ осуществляется быстрее. Можно установить дополнительные приемники РДМ, для того чтобы преодолеть влияние затенения от высоких препятствий.

В системе УМ места должны выбираться таким образом, чтобы свести к минимуму искажение фронта волны, обусловленное вторичными излученными локальных препятствий, отражениями от земли и изменением проводимости почвы. Некоторые антенные решетки системы УМ должны быть калиброваны после установки на месте, для того чтобы свести к минимуму результирующие ошибки, зависящие от частоты и направления.

Широкополосные сигналы, сигналы с низким ОСШ, а также сигналы малой длительности

Метод РДМ эффективно работает с новыми и появляющимися сигналами, характеризующимися сложными методами модуляции, широкой полосой и малой длительностью. С увеличением ширины полосы сигнала степень эффективности РДМ, как правило, возрастает.

Метод УМ, эффективно работает с узкополосными сигналами. Усовершенствованные методы УМ могут применяться для определения местоположения любых сигналов, в том числе широкополосных, сложных и коротких.

Степень эффективности УМ, в приближении, не зависит от ширины полосы сигнала, при условии, что разнос каналов, подвергающихся быстрому преобразованию Фурье (БПФ), равен ширине полосы сигнала.

Оба метода, РДМ и УМ, эффективнее работают с сигналами, имеющими более высокие ОСШ, и при большем времени интегрирования. Выигрыш за счет корреляционной обработки позволяет с помощью методов РДМ обнаруживать и определять местоположение сигналов с низким (и даже отрицательным) ОСШ. Кроме того, он позволяет задействовать при определении географического местоположения дополнительные приемники РДМ.

Сигналы с низким ОСШ могут обрабатываться с помощью усовершенствованных методов УМ, например корреляционных методов УМ с повышенной разрешающей способностью или со вспомогательными данными (опорная радиопеленгация).

Определение географического местоположения источников сигналов малой длительности требует координированной работы приемников, синхронизированных по времени до доли величины, обратно пропорциональной ширине полосы сигнала. Обеспечение такой возможности является непременным условием работы систем РДМ. Кроме того, методом РДМ можно определить географическое местоположение на основе измерений очень малой длительности, проводимых в отношении сигналов большей длительности.

Если элементы антенны УМ коммутированы, то необходимое время интегрирования будет меньше.

Сложность системы

Приемник и антенна системы РДМ являются более простыми, чем типовая антенная решетка и двух- или многоканальный приемник системы УМ.

Приемнику системы РДМ требуется как минимум один РЧ канал в реальном времени для обработки без задержки и с максимальной вероятностью перехвата сигнала (1) .

Подавление некоррелированных шумов и помех

С помощью корреляционной обработки, используемой в РДМ, можно подавлять сигналы на совпадающей частоте, совпадающий по времени шум и сигналы помех, которые некоррелированы между местами проведения измерений. Это свойство позволяет системе определять географическое местоположение источников сигналов с низкими отношениями сигнала к помехе и шуму (низкое отношение SINR).

Усовершенствованные системы УМ могут ослаблять влияние некоррелированных и совпадающих по времени помех на совпадающей частоте путем использования корреляции с опорными сигналами. Другие усовершенствованные методы обработки, например MUSIC могут быть устойчивыми к некоррелированным шумам и помехам. Однако такие методы требуют дорогостоящих вычислений и не получили широкого применения при осуществлении контроля за использованием спектра.

Ослабление влияния когерентных помех на совпадающей частоте (многолучевости) при определенных условиях

Степень эффективности УМ и РДМ, снижается в условиях многлучевости - когерентных помех на совпадающей частоте. Воздействие на каждый метод различается в зависимости от положения датчика по отношению к многолучевым отражениям.

При достаточной ширине полосы сигнала метод РДМ менее чувствителен к искажению фронта волны за счет локальных препятствий (локальной многолучевости). Может потребоваться усовершенствованная обработка сигнала для устранения неопределенностей при определении местоположения, вызванных удаленными препятствиями (дистанционная многолучевость). С помощью усовершенствованной обработки можно дополнительно отфильтровать корреляционные пары, используемые при определении местоположения методом РДМ, и улучшить результаты, получаемые в условиях повышенной многолучевости.

При усовершенствованной обработке методом РДМ можно исключить временные задержки при многолучевом распространении между местами проведения измерений, что обеспечивает высокую эффективность в условиях со сложным рельефом местности.

Соображения относительно конфигурации

РДМ и УМ, обеспечивают наибольшую точность, при ИРИ расположеном в центре периметра, образованного местами проведения измерений.

Точность определения географического местоположения методом РДМ определяется геометрическим показателем снижения точности, качеством временной синхронизации и качеством оценки РДМ.

Точность методов УМ напрямую зависит от расстояния между источником и каждым приемником УМ. Неопределенность положения является функцией от неопределенности угла пеленга и расстояния от приемника до оцениваемого положения.

Неопределенность местоположения и пеленга увеличивается с расстоянием одинаково в обоих методах.

Высокая степень пригодности к использованию в сетях РЧ датчиков

В обоих методах, РДМ и УМ, увеличение числа приемников ведет к улучшению результатов.

Метод РДМ хорошо подходит для развертывания многих приемников.

Возможность анализа в полностью автономном режиме на центральном сервере

В системах РДМ могут храниться и регистрироваться скоординированные во времени измерения сигналов от всех приемников, поэтому на центральном сервере можно осуществлять анализ в полностью автономном режиме. Сюда входит спектральный анализ сигнала каждого приемника, кросскорреляционные измерения и определение географического местоположения.

В системах УМ на центральном сервере также могут храниться и регистрироваться некоторые измерения сигналов (например, результаты пеленгации и точность пеленгации). Эти измерения скоординированы во времени до той степени временной синхронизации, которая достижима в системе УМ. Такие измерения, как результаты спектрального анализа и перекрестной корреляции, не являются типовыми, поскольку для них требуется такая же скорость передачи данных по соединительным линиям, как и в РДМ.


(1) В типовых корреляционных системах интерферометрии используется временное разделение для уменьшения числа необходимых приемников. Этим системам требуется два-три приемника, подключенных к пяти, семи или более антеннам. Эти системы являются менее сложными, чем полностью параллельные системы радиопеленгации, однако для определения местоположения им необходима бóльшая минимальная длительность сигнала.

Представленный в таблице качественный анализ достоинств и недостатков УМ и РДМ на первый взгляд свидетельствует о предпочтительности применения для реализации процедуры радиомониторинга РДМ. Вместе с тем, однозначно нельзя утверждать, что данный метод будет предпочтительнее во всех случаях. Поэтому далее проведем более детальное сравнение указанных методов на количественной основе. Для этого воспользуемся показателем в виде эллипса рассеяния ошибок , который характеризует разброс ошибок местоопределения конкретными численными показателями – размерами его малой и большой полуосей, а также их наклоном.

Для построения эллипса рассеяния с центром в точке сначала рассчитываются элементы матрицы точности местоопределения . Обратной к матрице точности является соответствующая границе Рао-Крамера корреляционная матрица ошибок вычисления координат , где - дисперсия по оси , - корреляционный момент, - дисперсия по оси .

Элементы матрицы точности для УМ вычисляются по формулам :


(1)

где , - координаты пеленгаторов, - общее количество позиций пеленгаторов, - евклидово расстояние между точками и на плоскости, - среднеквадратичная ошибка (СКО) оценивания пеленга, радиан.

Для РДМ местоопределения элементы матрицы точности вычисляются через матричное произведение .

Положение объекта в пространстве определяется тремя координатами х i , i=1,2,3, в той или иной системе координат. Положение объекта на поверхности Земли задается двумя координатами. Методы определения местоположения делятся на следующие группы:

§ обзорно-сравнительные;

§ методы счисления пути;

§ методы позиционных линий.

Обзорно-сравнительные методы основаны на сравнении наблюдаемой карты местности с эталонной, внесенной в память системы. На наблюдаемой карте нанесено положение объекта. Совмещение эталонной карты с наблюдаемой позволяет определить его координаты.

Используемые карты могут иметь различную физическую природу. Это может быть изображение земной поверхности в оптическом или радиолокационном диапазоне, карта звездного неба в оптическом или радиодиапазоне, карта радио­теплового излучения земной поверхности и т.д.

Совмещение карт обычно производится путем нахождения их взаимной кор­реляционной функции. Для двумерных карт

где – взаимная корреляционная функция (ВКФ); – наблюдае­мое изображение; – эталонное изображение; х, у – коорди­наты точки на наблюдаемой карте; х 0 , у 0 – координаты начала отсчета.

Максимум взаимной корреляционной функции наступает, когда х 0 +Dх=х, у 0 +Dу=у. Значения Dх, Dу в этой точке соответствуют смещению эталонной карты относительно реальной. Полное совмещение карт фиксируют по максиму­му ВКФ, поэтому метод иногда называют корреляционно-экстремальным.

Обзорно-сравнительный метод используется в навигации.

Метод счисления пути также применяется в навигации. Сущность метода счисления пути заключается в том, что на объекте (корабле, автомобиле, бронетранспортере и т.д.), стартующем из точки с известными координатами х 0 , у 0 , в каждый момент времени измеряются ускорения а х (t), a y (t) либо скорости v х (t), v y (t) no каждой из координат. Интегрированием ускорения определяют путевую скорость.

Например:

.

,

а затем и саму координату x(t) = x 0 + Dx(t).

Приборы для измерения ускорения (акселерометры) основаны на использовании второго закона Ньютона

где m– масса тела; F – приложенная к нему сила; а – ускорение, полученное телом в результате приложения к нему силы F.

Груз массой m помещается в пружинный подвес. Под действием

ускорения груз перемещается, причем перемещение, которое и измеряют, пропорционально ускорению.

Системы, основанные на измерении ускорения, называют инерциальными. Существуют навигационные системы, в которых измеряется не ускорение a(t), а непосредственно скорость v(t). Для этой цели используется эффект Доплера.

Наибольшее распространение в радиолокации и радионавигации получил метод позиционных линий. В основе метода позиционных линий лежит понятие поверхности положения – такой поверхности в пространстве, на которой измеряемая радиотехническая величина постоянна.

Непосредственно радиотехническими методами могут быть измерены расстояние, разность расстояний и направление. Рассмотрим соответствующие поверхности положения.

1. Поверхность равных дальностей, R = const. Очевидно, это сфера. Пересечение сферы с плоскостью (например, с плоскостью Земли) дает линию положения – окружность (рис. 3.50). Ее уравнение в полярных координатах .

2. Поверхность равных пеленгов (направлений), а = const. Если пеленг отсчитывается в горизонтальной плоскости от географического меридиана (направление север-юг – N-S), его называют истинным пеленгом или азимутом. Пересечение плоскостью равных азимутов поверхности земли дает прямую – линию равных пеленгов (рис. 3.51).

3. Поверхность равных разностей расстояний – поверхность, на которой разность расстояний до двух фиксированных точек пространства остается постоянной. В пространстве – это гиперболоид, а на поверхности земли – гипербола. На рис. 3.52 точки А и В – точки с известными координатами, R А – R B = R AB = const – уравнение линии равных разностей расстояний:

R AB = сDt AB ,

где Dt AB – разность времени распространения сигнала от точки О до точек А и В.

Принципиально важно, что в этом методе расстояния R A и R B не измеряются, а измеряется их разность R AB .

В радиолокации и радионавигации используются следующие методы местоопределения целей, основанные на применении перечисленных поверхностей положения.

Дальномерный метод. Из трех точек пространства производится определение расстояний до объекта. Пересечение двух поверхностей положения (сфер) дает линию положения. Пересечение этой линии с третьей сферой дает местоположение объекта в пространстве.

На рис. 3.53 изображена интерпретация метода применительно к плоскости. Как видно из рисунка, две линии положения пересекаются в двух точках. Для выявления той из них, которая соответствует истинному положению объекта, надо иметь ориентировочные сведения о нем или использовать третью линию положения. Метод широко используется в навигации: с борта судна определяют расстояния R A и R B до точек А и В с известными координатами, затем рассчитывают его местоположение.

Пеленгационный (угломерный) метод, называемый также триангуляционным. Рассмотрим его применительно к плоскости. Из двух точек П 1 и П 2 , положение которых на плоскости известно, определяются направления на объект О (рис. 3.54). Затем положение объекта относительно этих точек определяется путем решения треугольника П 1 П 2 О:

(3.24)

где L – дальномерная база.

Дальность R 1 и пеленг a 1 – координаты объекта в полярной системе координат с центром в точке П 1 .

Пеленгационный метод используется в различных вариантах. В одном из них точка О – излучающий объект, координаты которого следует определить. Это делается путем пеленгования его с помощью неизлучающих устройств, расположенных в точках П 1 и П 2 с известными координатами. Для вычисления дальности R пеленг с одного пеленгационного пункта, допустим П 2 , передается в другой, например по радиоканалу. Данный способ местоопределения получил распространение в системах радиоэлектронной борьбы.

В радионавигационных системах значения углов a 1 и a 2 , измеренные радиопеленгаторами, передаются по радиоканалам на борт объекта О, где и проводятся вычисления.

В другом варианте метода, используемом в радионавигации, в точке О находится потребитель радионавигационной информации с радиоприемным устройством на борту. В точках П 1 и П 2 с известными координатами располагаются передающие радионавигационные устройства.

Бортовое радиоприемное устройство может обладать направленным приемом, то есть способностью пеленгования. Такие устройства называются радиокомпасами. Определяя ими направления на всенаправленные источники излучения П 1 и П 2 (приводные станции), вычисляют затем местоположение объекта навигации. Бортовое радиоприемное устройство может быть всенаправленным. В этом случае в точках П 1 и П 2 устанавливаются пеленговые маяки – радиопередающие устройства, сигналы которых зависят от направления излучения в пределах 0 – 2p по азимуту. Пеленги определяются по принятым сигналам маяков.

Дальномерно-пеленгационный метод. Из одной точки пространства измеряется дальность до объекта R и направление (пеленг) на него (рис. 3.55). Этот метод наиболее часто используется в радиолокации. Дальность R определяется по задержке принятого сигнала относительно излученного:

Угловое положение цели в горизонтальной и вертикальной плоскостях: a – азимут, b – угол места (угол возвышения), определяются амплитудным либо фазовым методами.

Разностно-дальномерный (гиперболический) метод. Рассмотрим его применительно к плоскости (рис. 3.56).

Пусть объект наблюдения (точка О) излучает сигналы. Измеряются разности времени прихода этих сигналов Dt AB , Dt BC в пространственно разнесенные точки А и В, В и С. По ним вычисляются разности расстояний и строятся линии положения (гиперболы), пересечение которых определяет положение объекта. Для синхронизации работы приемных пунктов А, В и С должны существовать линии связи между ними. Имеют место соотношения:

В данном варианте метод используется в системах радиоэлектронной борьбы, когда надо определить координаты источника излучения противоборствующей стороны.

Разностно-дальномерный метод местоопределения широко используется в радионавигации. В этом варианте в точке О (см. рис. 3.56) расположен потребитель навигационной информации. В точках А, В и С расположены передающие устройства с известными координатами, излучающие синхронные сигналы. В структуре сигналов содержатся элементы, позволяющие определить их принадлежность тому или иному излучателю. Потребитель оборудован радиоприемным устройством, позволяющим одновременно принимать сигналы передающих пунктов и измерять разность времени их приема Dt AB , Dt BC . Разность расстояний DR AB , DR BC вычисляется по формулам, по разностям расстояний определяется местоположение точки О.

Радиолокационные системы

В условиях возросших боевых возможностей средств воздушно-космического нападения значительно увеличился объем задач, решаемых противовоздушной обороной страны. В первую очередь это касается ведения всех видов разведки, обеспечения противовоздушной обороны важнейших объектов государственного и военного назначения, прикрытие стратегических направлений. Проведение согласованных действий по противовоздушной обороне возможно только в результате применения радиотехнических соединений, частей и подразделений, оснащенных современными РЛС различного назначения и базирования. Ведение боевых действий истребительной авиацией и зенитно-ракетными войсками без анализа воздушной обстановки в реальном масштабе времени не только не эффективны, но и обречены на поражение. Для решения задач по обеспечению безопасности страны в воздушно-космическом пространстве необходимо создание единой системы разведки и предупреждения о воздушно-космическом нападении, которая обеспечит своевременность, полноту и упорядоченность поступления информации.