Бинарный код в текст. Бинарные коды Как решать двоичный код

Tool to make binary conversions. Binary code is a numeric system using base 2 used in informatics, symbols used in binary notation are generally zero and one (0 and 1).

Answers to Questions

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a number in binary?

To convert a number to binary (with zeroes and ones) consists in a from base 10 to base 2 (natural binary code )

Example: 5 (base 10) = 1*2^2+0*2^1+1*2^0 = 101 (base 2)

The method consists in making successive divisions by 2 and noting the remainder (0 or 1 ) in the reverse order.

Example: 6/2 = 3 remains 0, then 3/2 = 1 remains 1, then 1/2 = 0 remains 1. The successive remainders are 0,1,1 so 6 is written 110 in binary .

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a text in binary?

Associate with each letter of the alphabet a number, for example by using the code or the . This will replace each letter by a number that can then be converted to binary (see above).

Example: AZ is 65,90 () so 1000001,1011010 in binary

Similarly for binary to text translation, convert the binary to a number and then associate that number with a letter in the desired code.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to translate binary

The binary does not directly translate, any number encoded in binary remains a number. On the other hand, it is common in computer science to use binary to store text, for example by using the table, which associates a number with a letter. An translator is available on dCode.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is a bit?

A bit (contraction of binary digit) is a symbol in the binary notation: 0 or 1.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 1"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1.

Example: 0111 becomes 1000, so 7 becomes -7

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 2"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1 and adding 1.

Example: 0111 becomes 1001

Ask a new question

Source code

dCode retains ownership of the source code of the script Binary Code online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Binary Code script for offline use on PC, iPhone or Android, ask for price quote on

Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния : есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.

Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.

Подсчет в двоичном формате

В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.

1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)

Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.

Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная . Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.

Почему компьютеры используют двоичные файлы

Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.

Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.

Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.

Вот схема типичного транзистора:

По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики ).

Почему только двоичная система

Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».

Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер , разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.

Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.

Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .

Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.

Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.

Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов. При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом. Чем больше разрядов входит в код, тем больше значений может принимать данный код.

В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два - 0 и 1. Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева - самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) - в два раза. Каждый разряд двоичного кода называется бит (от английского "Binary Digit" - "двоичное число").

Рис. 2.9. Десятичное и двоичное кодирование

В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.

Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода. Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной - всего лишь 7 (то есть 111 в двоичном коде). В общем случае n-разрядное двоичное число может принимать 2 n различных значений, а n-разрядное десятичное число - 10 n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.

Таблица 2.3. Соответствие чисел в десятичной и двоичной системах
Десятичная система Двоичная система Десятичная система Двоичная система

Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатеричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом. Каждая такая группа называется полубайтом (или нибблом , тетрадой ), а две группы (8 разрядов) - байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода. В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.

Рис. 2.10. Двоичная и 16-ричная запись числа

В табл. 2.4 приведены примеры 16-ричного кодирования первых 20 чисел (в скобках приведены двоичные числа), а на рис. 2.10 показан пример записи двоичного числа в 16-ричном виде. Для обозначения 16-ричного кодирования иногда применяют букву "h" или "H" (от английского Hexadecimal) в конце числа, например, запись A17F h обозначает 16-ричное число A17F. Здесь А1 представляет собой старший байт числа, а 7F - младший байт числа. Все число (в нашем случае - двухбайтовое) называется словом .

Таблица 2.4. 16-ричная система кодирования
Десятичная система 16-ричная система Десятичная система 16-ричная система
0 (0) A (1010)
1(1) B (1011)
2 (10) C (1100)
3 (11) D (1101)
4 (100) E (1110)
5 (101) F (1111)
6 (110) 10 (10000)
7 (111) 11 (10001)
8 (1000) 12 (10010)
9 (1001) 13 (10011)

Для перевода 16-ричного числа в десятичное необходимо умножить значение младшего (нулевого) разряда на единицу, значение следующего (первого) разряда на 16, второго разряда на 256 (16 2) и т.д., а затем сложить все произведения. Например, возьмем число A17F:

A17F=F*16 0 + 7*16 1 + 1*16 2 + A*16 3 = 15*1 + 7*16+1*256+10*4096=41343

Но каждому специалисту по цифровой аппаратуре (разработчику, оператору, ремонтнику, программисту и т.д.) необходимо научиться так же свободно обращаться с 16-ричной и двоичной системами, как и с обычной десятичной, чтобы никаких переводов из системы в систему не требовалось.

Помимо рассмотренных кодов, существует также и так называемое двоично-десятичное представление чисел. Как и в 16-ричном коде, в двоично-десятичном коде каждому разряду кода соответствует четыре двоичных разряда, однако каждая группа из четырех двоичных разрядов может принимать не шестнадцать, а только десять значений, кодируемых символами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. То есть одному десятичному разряду соответствует четыре двоичных. В результате получается, что написание чисел в двоично-десятичном коде ничем не отличается от написания в обычном десятичном коде (табл. 2.6), но в реальности это всего лишь специальный двоичный код, каждый разряд которого может принимать только два значения: 0 и 1. Двоично-десятичный код иногда очень удобен для организации десятичных цифровых индикаторов и табло.

Таблица 2.6. Двоично-десятичная система кодирования
Десятичная система Двоично-десятичная система Десятичная система Двоично-десятичная система
0 (0) 10 (1000)
1(1) 11 (1001)
2 (10) 12 (10010)
3 (11) 13 (10011)
4 (100) 14 (10100)
5 (101) 15 (10101)
6 (110) 16 (10110)
7 (111) 17 (10111)
8 (1000) 18 (11000)
9 (1001) 19 (11001)

В двоичном коде над числами можно проделывать любые арифметические операции: сложение, вычитание, умножение, деление.

Рассмотрим, например, сложение двух 4-разрядных двоичных чисел. Пусть надо сложить число 0111 (десятичное 7) и 1011 (десятичное 11). Сложение этих чисел не сложнее, чем в десятичном представлении:

При сложении 0 и 0 получаем 0, при сложении 1 и 0 получаем 1, при сложении 1 и 1 получаем 0 и перенос в следующий разряд 1. Результат - 10010 (десятичное 18). При сложении любых двух n-разрядных двоичных чисел может получиться n-разрядное или (n+1)-разрядное число.

Точно так же производится вычитание. Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:

При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат - 1011 (десятичное 11).

При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код. Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

Отрицательные числа в дополнительном коде отличаются от положительных значением старшего разряда: единица в старшем разряде определяет отрицательное число, а нуль - положительное.

Помимо стандартных арифметических операций, в двоичной системе счисления используются и некоторые специфические операции, например, сложение по модулю 2. Эта операция (обозначается A) является побитовой, то есть никаких переносов из разряда в разряд и заемов в старших разрядах здесь не существует. Правила сложения по модулю 2 следующие: , , . Эта же операция называется функцией Исключающее ИЛИ . Например, просуммируем по модулю 2 два двоичных числа 0111 и 1011:

Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ. Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат -0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.

Решил сделать такой ниструмент как преобразование текста в двоичный код и обратно, такие сервисы есть, но они как правило работают с латиницей, мой же транслятор работает с кодировкой unicode формата UTF-8 , который кодирует кириллические символы двумя байтами.На данный момент возможности транслятора ограничены двухбайтными кодировками т.е. китайские иероглифы транслировать не получиться, но я собираюсь исправить это досадное недоразумение.

Для преобразования текста в бинарное представление введите текст в левое окошко и нажмите TEXT->BIN в правом окошке появится его двоичное представление.

Для преобразования бинарного кода в текст введите кода в правое окошко и нажмите BIN->TEXT в левом окошке появится его символьное представление.

В случае, если перевод бинарного кода в текст или наоборот не получился - проверьте корректность ваших данных!

Обновление!

Теперь доступно обратное преобразование текста вида:

в нормальный вид. Для этого нужно поставить галочку: "Заменить 0 пробелами, а 1 заполнителем █". Затем вставьте текст в правое окошко: "Текст в бинарном представлении" и нажмите кнопку под ним "BIN->TEXT".

При копировании таких текстов нужно быть осторожным т.к. можно запросто потерять пробелы в начале или в конце. Например строка сверху имеет вид:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

а на красном фоне:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

видите сколько пробелов в конце можно потерять?

Разрядность двоичного кода, Преобразование информации из непрерывной формы в дискретную, Универсальность двоичного кодирования, Равномерные и неравномерные коды, Информатика 7 класс Босова, Информатика 7 класс

1.5.1. Преобразование информации из непрерывной формы в дискретную
Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).
Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.
Дискретизация информации - процесс преобразования информации из непрерывной формы представления в дискретную.
Рассмотрим суть процесса дискретизации информации на примере.
На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления . Результатом их работы являются барограммы - кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рис. 1.9.

На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений (рис. 1.10).

Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.
Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).
В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.

Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 - вдвое больше, чем из двух двоичных символов:
Соответственно, четырёхразрядйый двоичный позволяет получить 16 кодовых комбинаций, пятиразрядный - 32, шестиразрядный - 64 и т. д. Длину двоичной цепочки - количество символов в двоичном коде - называют разрядностью двоичного кода.
Обратите внимание, что:
4 = 2 * 2,
8 = 2 * 2 * 2,
16 = 2 * 2 * 2 * 2,
32 = 2 * 2 * 2 * 2 * 2 и т. д.
Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.
Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода - буквой i, то выявленная закономерность в общем виде будет записана так:
N = 2 * 2 * ... * 2.
i множителей
В математике такие произведения записывают в виде:
N = 2 i .
Запись 2 i читают так: «2 в i-й степени».

Задача. Вождь племени Мульти поручил своему министру разработать двоичный и перевести в него всю важную информацию . Двоичный какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.
Решение. Так как алфавит племени Мульти состоит из 16 символов, то и кодовых комбинаций им нужно 16. В этом случае длина (разрядность) двоичного кода определяется из соотношения: 16 = 2 i . Отсюда i = 4.
Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110,0111,1000,1001,1010,1011,1100,1101,1110,1111.

1.5.3. Универсальность двоичного кодирования
В начале этого параграфа вы узнали, что, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный. Таким образом, с помощью двоичного кода может быть представлена любая на естественных и формальных языках, а также изображения и звуки (рис. 1.14). Это и означает универсальность двоичного кодирования.
Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы - «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).
Простота технической реализации - главное достоинство двоичного кодирования. Недостаток двоичного кодирования - большая длина получаемого кода.

1.5.4. Равномерные и неравномерные коды
Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные - разное.
Выше мы рассмотрели равномерные двоичные коды.
Примером неравномерного кода может служить азбука Морзе, в которой для каждой буквы и цифры определена последовательность коротких и длинных сигналов. Так, букве Е соответствует короткий сигнал («точка»), а букве Ш - четыре длинных сигнала (четыре «тире»). Неравномерное позволяет повысить скорость передачи сообщений за счёт того, что наиболее часто встречающиеся в передаваемой информации символы имеют самые короткие кодовые комбинации.

Информация, которую дает этот символ, равна энтропии системы и максимальна в случае, когда оба состояния равновероятны; в этом случае элементарный символ передает информацию 1 (дв. ед.). Поэтому основой оптимального кодирования будет требование, чтобы элементарные символы в закодированном тексте встречались в среднем одинаково часто.

Изложим здесь способ построения кода, удовлетворяющего поставленному условию; этот способ известен под названием «кода Шеннона - Фэно». Идея его состоит в том, что кодируемые символы (буквы или комбинации букв) разделяются на две приблизительно равновероятные группы: для первой группы символов на первом месте комбинации ставится 0 (первый знак двоичного числа, изображающего символ); для второй группы - 1. Далее каждая группа снова делится на две приблизительно равновероятные подгруппы; для символов первой подгруппы на втором месте ставится нуль; для второй подгруппы - единица и т. д.

Продемонстрируем принцип построения кода Шеннона - Фэно на материале русского алфавита (табл. 18.8.1). Отсчитаем первые шесть букв (от «-» до «т»); суммируя их вероятности (частоты), получим 0,498; на все остальные буквы (от «н» до «сф») придется приблизительно такая же вероятность 0,502. Первые шесть букв (от «-» до «т») будут иметь на первом месте двоичный знак 0. Остальные буквы (от «н» до «ф») будут иметь на первом месте единицу. Далее снова разделим первую группу на две приблизительно равновероятные подгруппы: от «-» до «о» и от «е» до «т»; для всех букв первой подгруппы на втором месте поставим нуль, а второй подгруппы"- единицу. Процесс будем продолжать до тех пор, пока в каждом подразделении не останется ровно одна буква, которая и будет закодирована определенным двоичным числом. Механизм построения кода показан на таблице 18.8.2, а сам код приведен в таблице 18.8.3.

Таблица 18.8.2.

Двоичные знаки

Таблица 18.8.3

С помощью таблицы 18.8.3 можно закодировать и декодировать любое сообщение.

В виде примера запишем двоичным кодом фразу: «теория информации»

01110100001101000110110110000

0110100011111111100110100

1100001011111110101100110

Заметим, что здесь нет необходимости отделять друг от друга буквы специальным знаком, так как и без этого декодирование выполняется однозначно. В этом можно убедиться, декодируя с помощью таблицы 18.8.2 следующую фразу:

10011100110011001001111010000

1011100111001001101010000110101

010110000110110110

(«способ кодирования»).

Однако необходимо отметить, что любая ошибка при кодировании (случайное перепутывание знаков 0 и 1) при таком коде губительна, так как декодирование всего следующего за ошибкой текста становится невозможным. Поэтому данный принцип кодирования может быть рекомендован только в случае, когда ошибки при кодировании и передаче сообщения практически исключены.

Возникает естественный вопрос: а является ли составленный нами код при отсутствии ошибок действительно оптимальным? Для того чтобы ответить на этот вопрос, найдем среднюю информацию, приходящуюся на один элементарный символ (0 или 1), и сравним ее с максимально возможной информацией, которая равна одной двоичной единице. Для этого найдем сначала среднюю информацию, содержащуюся в одной букве передаваемого текста, т. е. энтропию на одну букву:

,

где - вероятность того, что буква примет определенное состояние («-», о, е, а,…, ф).

Из табл. 18.8.1 имеем

(дв. единиц на букву текста).

По таблице 18.8.2 определяем среднее число элементарных символов на букву

Деля энтропию на, получаем информацию на один элементарный символ

(дв. ед.).

Таким образом, информация на один символ весьма близка к своему верхнему пределу 1, а выбранный нами код весьма близок к оптимальному. Оставаясь в пределах задачи кодирования по буквам, мы ничего лучшего получить не сможем.

Заметим, что в случае кодирования просто двоичных номеров букв мы имели бы изображение каждой буквы пятью двоичными знаками и информация на один символ была бы

(дв. ед.),

т. е. заметно меньше, чем при оптимальном буквенном кодировании.

Однако надо заметить, что кодирование «по буквам» вообще не является экономичным. Дело в том, что между соседними буквами любого осмысленного текста всегда имеется зависимость. Например, после гласной буквы в русском языке не может стоять «ъ» или «ь»; после шипящих не могут стоять «я» или «ю»; после нескольких согласных подряд увеличивается вероятность гласной и т. д.

Мы знаем, что при объединении зависимых систем суммарная энтропия меньше суммы энтропий отдельных систем; следовательно, информация, передаваемая отрезком связного текста, всегда меньше, чем информация на один символ, умноженная на число символов. С учетом этого обстоятельства более экономный код можно построить, если кодировать не каждую букву в отдельности, а целые «блоки» из букв. Например, в русском тексте имеет смысл кодировать целиком некоторые часто встречающиеся комбинации букв, как «тся», «ает», «ние» и т. п. Кодируемые блоки располагаются в порядке убывания частот, как буквы в табл. 18.8.1, а двоичное кодирование осуществляется по тому же принципу.

В ряде случаев оказывается разумным кодировать даже не блоки из букв, а целые осмысленные куски текста. Например, для разгрузки телеграфа в предпраздничные дни целесообразно кодировать условными номерами целые стандартные тексты, вроде:

«поздравляю новым годом желаю здоровья успехов работе».

Не останавливаясь специально на методах кодирования блоками, ограничимся тем, что сформулируем относящуюся сюда теорему Шеннона.

Пусть имеется источник информации и приемник, связанные каналом связи (рис. 18.8.1).

Известна производительность источника информации, т. е. среднее количество двоичных единиц информации, поступающее от источника в единицу времени (численно оно равно средней энтропии сообщения, производимого источникам в единицу времени). Пусть, кроме того, известна пропускная способность канала, т. е. максимальное количество информации (например, двоичных знаков 0 или 1), которое способен передать канал в ту же единицу времени. Возникает вопрос: какова должна быть пропускная способность канала, чтобы он «справлялся» со своей задачей, т. е. чтобы информация от источника к приемнику поступала без задержки?

Ответ на этот вопрос дает первая теорема Шеннона. Сформулируем ее здесь без доказательства.

1-я теорема Шеннона

Если пропускная способность канала связи больше энтропии источника информации в единицу времени

то всегда можно закодировать достаточно длинное сообщение так, чтобы оно передавалось каналом связи без задержки. Если же, напротив,

то передача информации без задержек невозможна.