Последовательная шина usb. Последовательная универсальная шина USB (Universal Serial Bus) Последовательная шина usb режимы передачи данных

Первая спецификация (версия 1.0) USB была опубликована в начале 1996 года, а осенью 1998 года появилась спецификация 1.1, исправляющая проблемы, обнаруженные в первой редакции. Весной 2000 года была опубликована версия 2.0, в которой предусматривалось 40-кратное повышение пропускной способности шины. Так, спецификация 1.0 и 1.1 обеспечивает работу на скоростях 12 Мбит/с и 1,5 Мбит/с, а спецификация 2.0 - на скорости 480 Мбит/с. При этом предусматривается обратная совместимость USB 2.0 с USB 1.х.

Окончательная спецификация USB 3.0 появилась в 2008 году. Созданием USB 3.0 занимались компании Intel , Microsoft , Hewlett-Packard , Texas Instruments , NEC и. NXP Semiconductors В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0. В дополнение к четырем линиям USB 2.0 в USB 3.0 добавляется еще четыре линии связи (две витых пары). Новые контакты в разъемах USB 3.0 расположены отдельно от старых на другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с, таким образом, скорость передачи возрастает с 60 Мбайт/с до 600 Мбайт/с и позволяет передать 1 Тб не за 8-10 часов, а за 40 минут-1 час. Версия 3.0 так же может похвастаться увеличенной силой тока с 500 мА до 900 мА, поэтому пользователь может не только подпитывать от одного хаба большее количество устройств, но и сами устройства во многих случаях смогут избавиться от отдельных блоков питания.

Общая архитектура USB

Физическая архитектура USB определяется следующими правилами:

  • устройства подключаются к хосту;
  • физическое соединение устройств между собой осуществляется по топологии многоярусной звезды, вершиной которой является корневой хаб;
  • центром каждой звезды является хаб;
  • каждый кабельный сегмент соединяет между собой две точки: хост с хабом или функцией, хаб с функцией или другим хабом;
  • к каждому порту хаба может подключаться периферийное USB-устройство или другой хаб, при этом допускаются до 5 уровней каскадирования хабов, не считая корневого.

Самым верхним уровнем является корневой концентратор, который обычно совмещается с USB контроллером.

К корневому концентратору могут быть подключены либо устройства, либо еще концентраторы, для увеличения числа доступных портов. Концентратор может быть выполнен в виде отдельного устройства, либо быть встроенным в какое-то другое, т.е. устройства, подключаемые к USB, можно подразделить на функциональные устройства, т.е. те, которые выполняют какую-то конкретную функцию (например, мыши), устройства-концентратор, выполняющие только функцию только разветвления, и совмещенные устройства, имеющие в своем составе концентратор, расширяющие набор портов (например, мониторы, с портами для подключения других).


На пятом уровне комбинированное устройство использоваться не может. Кроме того отдельно стоит упомянуть о хосте, являющемся скорее программно-аппаратным комплексом, нежели просто устройством.


Детали физической архитектуры скрыты от прикладных программ в системном программном обеспечении (ПО), поэтому логическая архитектура выглядит как обычная звезда, центром которой является прикладное ПО, а вершинами - набор конечных точек. Прикладная программа ведет обмен информацией с каждой конечной точкой.

Составляющие USB

Шина USB состоит из следующих элементов:


Свойства USB-устройств

  • адресация - устройство должно отзываться на назначенный ему уникальный адрес и только на него;
  • конфигурирование - после включения или сброса устройство должно предоставлять нулевой адрес для возможности конфигурирования его портов;
  • передача данных - устройство имеет набор конечных точек для обмена данными с хостом. Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них;
  • управление энергопотреблением - любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. При конфигурировании устройство заявляет свои потребности тока, но не более 500 мА. Если хаб не может обеспечить устройству заявленный ток, устройство не будет использоваться;
  • приостановка - USB-устройство должно поддерживать приостановку (suspended mode), при которой его потребляемый ток не превышает 500 мкА. USB-устройство должно автоматически приостанавливаться при прекращении активности шины;
  • удаленное пробуждение - возможность удаленного пробуждения (remote wakeup) позволяет приостановленному USB-устройству подать сигнал хосту, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации USB-устройства. При конфигурировании эта функция может быть запрещена.

Логические уровни обмена данными

Спецификация USB определяет три логических уровня с определенными правилами взаимодействия. USB-устройство содержит интерфейсную, логическую и функциональную части. Хост тоже делится на три части - интерфейсную, системную и ПО. Каждая часть отвечает только за определенный круг задач.

Таким образом, операция обмена данными между прикладной программой и шиной USB выполняется путем передачи буферов памяти через следующие уровни:

  • уровень клиентского ПО в хосте:
    • обычно представляется драйвером USB-устройства;
    • обеспечивает взаимодействие пользователя с операционной системой с одной стороны и системным драйвером с другой;
  • уровень системного драйвера USB в хосте(USB, Universal Serial Bus Driver):
    • управляет нумерацией устройств на шине;
    • управляет распределением пропускной способности шины и мощности питания;
    • обрабатывает запросы пользовательских драйверов;
  • уровень хост-контроллера интерфейса шины USB (HCD, Host Controller Driver):
    • преобразует запросы ввода/вывода в структуры данных, по которым выполняются физические транзакции;
    • работает с регистрами хоста.

Отношения клиентского программного обеспечения и USB устройств: USB предоставляет для взаимодействия программный интерфейс и только его, позволяя клиентскому ПО существовать в отрыве от конкретного подключенного к шине устройства и его конфигурации. Для клиентской программы USB - это лишь набор функций.

Взаимодействие компонентов USB представлено на схеме ниже:

В рассматриваемую структуру входят следующие элементы:

Физическое устройство USB — устройство на шине, выполняющее функции, интересующие конечного пользователя.

Client SW — ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

USB System SW — системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

USB Host Controller — аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

Принципы передачи данных

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Канал является логической связкой между хостом и конечной точкой внешнего устройства.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщений.

Поток доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: сплошной, изохронный и прерывания. Доставка всегда идет в порядке «первым вошел — первым вышел» (FIFO); с точки зрения USB, данные потока неструктурированны. Сообщения имеют формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двухсторонний обмен сообщениями адресуется к одной и той же конечной точке. Для доставки сообщений используется только обмен типа «управление».

С каналами связаны характеристики, соответствующие конечной точке. Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.

Любой обмен по шине USB инициируется хост-контроллером. Он организует обмены с устройствами согласно своему плану распределения ресурсов.

Контроллер циклически (с периодом 1,0 ± 0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные передачи.

Каждый кадр начинается с посылки пакета-маркера SOF (Start Of Frame, начало кадра), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF (End Of Frame, конец кадра), на время которого хабы запрещают передачу по направлению к контроллеру. Если хаб обнаружит, что с какого-то порта в это время ведется передача данных, этот порт отключается.

В режиме высокоскоростной передачи пакеты SOF передаются в начале каждого микрокадра (период 125 ± 0,0625 мкс).

Хост планирует загрузку кадров так, чтобы в них всегда находилось место для наиболее приоритетных передач, а свободное место кадров заполняется низкоприоритетными передачами больших объемов данных. Спецификация USB позволяет занимать под периодические транзакции (изохронные и прерывания) до 90% пропускной способности шины.

Каждый кадр имеет свой номер. Хост-контроллер оперирует 32-битным счетчиком, но в маркере SOF передает только младшие 11 бит. Номер кадра циклически увеличивается во время EOF.

Для изохронной передачи важна синхронизация устройств и контроллера. Есть три варианта синхронизации:

  • синхронизация внутреннего генератора устройства с маркерами SOF;
  • подстройка частоты кадров под частоту устройства;
  • согласование скорости передачи (приема) устройства с частотой кадров.

В каждом кадре может быть выполнено несколько транзакций, их допустимое число зависит от скорости, длины поля данных каждой из них, а также от задержек, вносимых кабелями, хабами и устройствами. Все транзакции кадров должны быть завершены до момента времени EOF. Частота генерации кадров может немного варьироваться с помощью специального регистра хост-контроллера, что позволяет подстраивать частоту для изохронных передач. Подстройка частоты кадров контроллера возможна под частоту внутренней синхронизации только одного устройства.

Информация по каналу передается в виде пакетов (Packet). Каждый пакет начинается с поля синхронизации SYNC (SYNChronization), за которым следует идентификатор пакета PID (Packet IDentifier). Поле Check представляет собой побитовую инверсию PID.

Структура данных пакета зависит от группы, к которой он относится.

1. Клиентское ПО посылает IPR-запросы уровню USBD.

2. Драйвер USBD разбивает запросы на транзакции по следующим правилам:

  • выполнение запроса считается законченным, когда успешно завершены все транзакции, его составляющие;
  • все подробности отработки транзакций (такие как ожидание готовности, повтор транзакции при ошибке, неготовность приемника и т. д.) до клиентского ПО не доводятся;
  • ПО может только запустить запрос и ожидать или выполнения запроса или выхода по тайм-ауту;
  • устройство может сигнализировать о серьезных ошибках, что приводит к аварийному завершению запроса, о чем уведомляется источник запроса.

3. Драйвер контроллера хоста принимает от системного драйвера шины перечень транзакций и выполняет следующие действия:

  • планирует исполнение полученных транзакций, добавляя их к списку транзакций;
  • извлекает из списка очередную транзакцию и передает ее уровню хост-контроллера интерфейса шины USB;

4. Хост-контроллер интерфейса шины USB формирует кадры;

5. Кадры передаются последовательной передачей бит по методу NRZI

Таким образом, можно сформировать следующую упрощенную схему:

1. каждый кадр состоит из наиболее приоритетных посылок, состав которых формирует драйвер хоста;

2. каждая передача состоит из одной или нескольких транзакций;

3. каждая транзакция состоит из пакетов;

4. каждый пакет состоит из идентификатора пакета, данных (если они есть) и контрольной суммы.

Типы сообщений в USB

Спецификация шины определяет четыре различных типа передачи (transfer type) данных для конечных точек:

  • управляющие передачи (Control Transfers ) — используются хостом для конфигурирования устройства во время подключения, для управления устройством и получения статусной информации в процессе работы. Протокол обеспечивает гарантированную доставку таких посылок. Длина поля данных управляющей посылки не может превышать 64 байт на полной скорости и 8 байт на низкой. Для таких посылок хост гарантированно выделяет 10% полосы пропускания;
  • передачи массивов данных (Bulk Data Transfers ) — применяются при необходимости обеспечения гарантированной доставки данных от хоста к функции или от функции к хосту, но время доставки не ограничено. Такая передача занимает всю доступную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет у таких передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи. Такие посылки используются, например, принтерами или сканерами;
  • передачи по прерываниям (Interrupt Transfers ) — используются в том случае, когда требуется передавать одиночные пакеты данных небольшого размера. Каждый пакет требуется передать за ограниченное время. Операции передачи носят спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Поле данных может содержать до 64 байт на полной скорости и до 8 байт на низкой. Предел времени обслуживания устанавливается в диапазоне 1—255 мс для полной скорости и 10—255 мс — для низкой. Такие передачи используются в устройствах ввода, таких как мышь и клавиатура;
  • изохронные передачи (Isochronous Transfers ) — применяются для обмена данными в "реальном времени", когда на каждом временном интервале требуется передавать строго определенное количество данных, но доставка информации не гарантирована (передача данных ведется без повторения при сбоях, допускается потеря пакетов). Такие передачи занимают предварительно согласованную часть пропускной способности шины и имеют заданную задержку доставки. Изохронные передачи обычно используются в мультимедийных устройствах для передачи аудио- и видеоданных, например, цифровая передача голоса. Изохронные передачи разделяются по способу синхронизации конечных точек — источников или получателей данных — с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Механизм прерываний

Для шины USB настоящего механизма прерываний не существует. Вместо этого хост опрашивает подключенные устройства на предмет наличия данных о прерывании. Опрос происходит в фиксированные интервалы времени, обычно каждые 1 - 32 мс. Устройству разрешается посылать до 64 байт данных.

С точки зрения драйвера, возможности работы с прерываниями фактически определяются хостом, который и обеспечивает поддержку физической реализации USB-интерфейса.

Режимы передачи данных

Шина USB имеет три режима передачи данных:

  • низкоскоростной (LS, Low-speed) 1.5 Мбит/с;
  • полноскоростной (LF, Full-speed) 12 Мбит/с;
  • высокоскоростной (HS, High-speed, только для USB 2.0) 480 Мбит/с.

Подключение периферийных устройств к шине USB

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства.

Спецификация 1.0 регламентировала два типа разъёмов:


Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB.

Существуют также разъёмы типа Mini AB и Micro AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.

Так же существуют миниатюрные разъёмы - Micro USB.

Тип USB 2.0 Значение контактов Цвет провода

Подключение полноскоростного устройства

Подключение низкоскоростного устройства

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert). Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика.

Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения.

Шина USB предназначена для сопряжения ПК с различными устройствами типа телефона, факса, модема, сканера, автоответчика, клавиатуры, мыши и т.д. Эта шина для настольных систем отвечает требованиям технологии plug and play и является среднескоростной, двунаправленной дешевой шиной, повышающей взаимосвязность компонентов ПК и расширяющей его архитектуру.

Основные свойства шины USB:

Возможность подключения до 127 физических устройств;

Автоматическое распознавание периферии;

Образование различных конфигураций;

Реализация как изохронных, так и синхронных типов передач с широким диапазоном скоростей;

Наличие механизма обработки ошибок;

Управление питанием и т.д.

Технология шины USB представлена на рис.7.1 и имеет многоуровневую звездообразную структуру (древовидную конфигурацию).

Рис.7.1. Топология шины USB

Каждую звезду образует хаб (пункт присоединения), обеспечивающий подключение одного или несколько функционеров (функ), периферийных устройств. Шина USB содержит один хост (контроллер), образующий корневой уровень и управляющий работой функционеров. Хаб является основным элементом в архитектуре USB, поддерживающей соединение нескольких хабов. В состав хаба входит один верхний потоковый порт ВПП, необходимый для подключения хаба к «хвосту», и несколько нижних потоковых портов (НПП), соединяющих его с другими хабами и (или) функционерами (рис.7.2).

Рис.7.2. Общий вид хаба

Хаб выполняет следующие функции: обнаружение присоединения (отсоединения) другого хаба или функционера; управление питанием и конфигурированием устройств, подключенных к соответствующим НПП. Хаб содержит контроллер и репитер (управляемый протоколом переключатель портов между ВПП и НПП1-НПП7). Контроллер использует интерфейсные регистры для выполнения связи с хостом, который с помощью управляющих команд конфигурирует хаб и следит за его партнерами. На рис.7.3 показана система типа «рабочий стол», содержащая хабы и функционеры.

Функционер представляет собой отдельное USB-устройство, которое кабелем подключается к какому-либо порту хаба. Хаб/функционер выполняется как устройство, содержащее встроенный хаб. Каждый функционер перед его использованием должен быть сконфигурирован хостом, которое включает распределение диапазона частот и выбор специфических опций для конфигурации.

Рис.7.3. Система рабочий стол, содержащая хабы и функционеры

USB-хост (центральная ЭВМ) осуществляет доступ к USB-устройствам с помощью хост-контроллера, который выполняет следующие действия:

Координацию потоков управления и данных между хостом и устройствами;

Обнаружение подключенных (отключенных) устройств;

Сбор информации о состоянии системы;

Управление питанием.

Протокол шины выполняется следующим образом. Хост направляет по шине USB эстафетный пакет, в котором указывается тип пакета, направление транзакции (действия на шине), адрес устройства и номер конечной точки. Конечная точка – это уникально определяемая часть USB-устройства, содержащего несколько таких точек (конечных пунктов связи). Комбинация адреса устройства и номера конечной точки в этом устройстве позволяет выбрать каждую точку в отдельности. Любая конечная точка должна быть сконфигурирована перед употреблением и характеризуется частотой, временем ожидания доступа к шине, шириной полосы частот, максимальным размером пакета, типом и направлением передачи. Устройства с низким быстродействием содержат не более двух конечных точек, а устройства с высоким быстродействием – до 16 выходных точек.

После того как передача данных завершена, USB-устройство (приемник) отвечает пакетом подтверждения, в котором отмечается успешность этой передачи.

Сигналы данных D+ и D- и питание (V и G – земля) в шине USB передаются от точки к точке по четырем проводам 90-омного кабеля (рис. 7.4.) с максимальной длиной 5м. Номинальное напряжение питания – 5v.

Рис.7.4. Кабель USB

Хост (хаб) обеспечивает питанием устройства USB, которые подключены к нему. Кроме того, устройства USB могут иметь автономное питание. Питание по шине USB имеет ограниченную величину.

Шина USB обеспечивает два диапазона скоростей передачи информации: низкая скорость (1,5 Мбит/с) и высокая скорость (12 Мбит/с). Низкоскоростной режим применяется для взаимодействия с интерактивными устройствами (мышью, трекболом и т.п.), а высокоскоростной режим – с адаптером телефона, аудио- или видеоустройствами. Каждому пакету данных предшествует поле синхронизации, которое позволяет приемникам согласовывать во времени их таймеры (генераторы) для приема данных. Поле синхронизации содержит синхроимпульсы, закодированные по методу NRZI с битовым заполнением.

Связь между хостом и конечной точкой образует канал. Устройство USB может иметь конечную точку, поддерживающую только канал управления, или конечную точку, использующую канал для передачи данных.

USB выполняет следующие типы передач по соответствующим каналам в одном или обоих направлениях:

Управляющую спонтанную (непериодическую) передачу по типу запрос/ответ, используемую для передачи команд/состояния и обычно применяемую с целью конфигурирования устройства в момент его подключения;

Контейнерную передачу, случайно возникающую во времени, состоящую из большого числа данных, выводимых, например, в принтер или сканер;

Передачу прерывания (непериодическую передачу данных с низкой частотой из устройства в любой момент времени, состоящую из одного или нескольких байтов, направляемых в главную ЭВМ и требующих обслуживания устройства);

Изохронную (периодическую потоковую) передачу, обеспечивающую непрерывную связь между хостом и устройством, в реальном времени с предварительной установленной скоростью и временем ожидания.

Все устройства USB содержат конечную точку О, к которой имеет доступ по умолчанию канал управления. Информация конечной точки О описывает устройство USB и состоит из следующих частей: стандарта, использующего дескрипторы устройства, его структуры, интерфейса и конечных точек; класса устройства и сведений о поставщике. Конечная точка О применяется для инициализации и конфигурирования устройства USB.

Через каналы перемещается информация между хостом и конечной точкой с использованием буферной памяти. Различают два режима работы канала: поток – данные, не имеющий определенной структуры, и сообщение – данные, передаваемые в соответствии с заданным порядком. Системное программное обеспечение (ПО) монопольно владеет каналом и представляет его другим ПО. Пользователь ПО запрашивает передачи по каналу, ждет их и затем уведомляется о завершении передач данных. Конечная точка сигналом NAK может сообщить хосту о том, что она занята.

Потоковые каналы передают пакеты данных, не имеющих структуру USB, в одном или другом направлении (однонаправленная передача). Потоковые каналы поддерживают контейнерную, изохронную передачу и передачу прерываний.

Управляющая передача разрешает доступ к какой-либо части устройства и предназначена для обмена информацией, типа конфигурация / команды / состояние, между пользовательским ПО и функционером. Управляющая передача в общем случае содержит информацию запроса (установочный пакет), данные и возвращаемую в хост информацию состояния функционера. Установочный пакет имеет определенную структуру, состоящую из набора команд, необходимых для установления связи между хостом и устройством USB. Описание состояния устройства имеет также определенную структуру, а данные управления, следующие за установочным пакетом, не имеют какой-либо структуры и содержат информацию о запрошенном доступе. Управляющая передача выполняется как двунаправленный поток информации по каналам сообщений. Стандарт шины USB ограничивает размеры пакета данных для высокоскоростных устройств 8, 16, 32 или 64 байтами, а низкоскоростные устройства могут иметь пакет данных не более 8 байтов. Установочный пакет всегда содержит 8 байтов. Вначале (после сброса) хост использует пакет данных размером в 8 байтов, который является достаточным для стандартных операций, а после определения типа конечной точки по ее конфигурационной информации может быть использован пакет большого размера для выполнения специфических операций. Таким образом, все данные при передаче делятся на равные части (пакеты), кроме последней части, которая содержит оставшиеся данные.

В том случае, если конечная точка занята определенное время, хост будет повторять к ней доступ через некоторое время. При обнаружении ошибки хостом выполняется повторная передача.

На рис.7.5 представлена общая схема взаимодействия компонентов шины USB.

Рис.7.5. Общая схема взаимодействия компонентов шины USB

Хост (координирующий центр) содержит: системное ПО USB, поддерживающее интерфейс USB в конкретной операционной системе и поставляемое вместе с ней; ПО пользователя, необходимое для управления работой определенного устройства USB, которое входит в состав операционной системы или поставляется вместе с устройством, и контроллер, позволяющий устройствам подключаться к хосту. Устройство USB также имеет несколько уровней реализации: интерфейс шины, логику устройства (совокупность точек) и функционер (функциональный уровень устройства).

В шине USB используется метод кодирования NRZI (без возвращения к нулю с инверсией). В этом случае метод кодирования NRZI состоит в том, что если бит передаваемых данных равен 0, то происходит изменение уровня напряжения, а - если равен 1, то уровень напряжения сохраняется. На рис.7.6 показан пример кодирования данных методом NRZI.

Рис.7.6. Пример кодирования методом NRZI

Таким образом, строка нулей вызывает переключение уровней сигналов, а строка единиц образует длительные отрезки уровней без всяких переходов, что может нарушить условие синхронизации при выделении каждого бита. Поэтому при передачи данных через каждые шесть последовательных единиц вставляется нуль, чтобы гарантировать достоверное определение каждого битового интервала при приеме в наиболее худшем случае, когда передаются единичные значения битов данных. Приемник декодирует код NRZI и отбрасывает вставленные биты нулей. На рис.7.7 представлена временная диаграмма этапов кодирования данных.

На диаграмме вначале показаны необработанные данные, содержащие поле синхрокомбинаций и пакет данных, причем синхрокомбинация имеет 7 нулей и заканчивается единичным битом, после которого начинается пакет данных. Затем на диаграмме изображены заполненные данные, которые дополнительно содержат после шести единиц вставленный бит 0. В число шести единиц входит и последний единичный бит синхрокомбинации. После этого выполняется кодирование заполненных данных методом NRZI с учетом и поля синхрокомбинации. Правило заполнения требует, чтобы бит 0 был вставлен, даже если этот бит будет последним, перед сигналом EOP (конец пакета).

Рис.7.7. Временная диаграмма этапов кодирования данных

Рассмотрим некоторые электрические требования шины USB. На рис.7.8 представлена схема симметричного шинного формирователя (драйвера) USB, содержащего два одинаковых буфера, выполненных по технологии КМОП.

Рис.7.8. Схема дифференциального формирователя

Симметричный дифференциальный формирователь содержит два разно-полярных выхода D+ и D-, имеющих три состояния, чтобы реализовать двунаправленную полудуплексную работу. Один из выходов представляет буферизованный повторитель входа, а другой является его дополнением. Эти выходы соединяются парой скрещенных проводов со входами дифференциального приемника. Таким образом, по проводам передаются два сигнала, которые подвергаются в одинаковой мере воздействию синфазных помех, устраняемых дифференциальным приемником.

Так как выходы формирователя имеют разные полярности, то при передаче данных с высокой частотой возникают отраженные разнополярные сигналы, которые не являются синфазными помехами. Поэтому следует устранить возможность возникновения отраженных сигналов на приемной стороне интерфейса.

Применение дифференциального принципа передачи повышает ее помехоустойчивость и, как следствие, позволяет увеличить скорость передачи данных.

На рис.7.9 показана диаграмма сигналов на выходах формирователя для скорости передачи 12 Мбит/с (а) и 1.5 Мбит/с (б).

Рис.7.9. Диаграммы сигналов на выходах формирователей для скоростей передачи данных 12 Мбит/с (а) и 1.5 Мбит/с (б)

При скорости передачи данных 12 Мбит/с используется витая пара экранированного кабеля, а для скорости 1.5 Мбит/с – неэкранированный кабель с нескрученной парой проводников. Сопряжение приемопередатчиков (ПП) с помощью кабеля USB в случае высокоскоростной (а) и низкоскоростной (б) передач изображено на рис.7.10.

Из схем видно, что высокоскоростные устройства содержат резистор нагрузки (R Н) на линии D+, а низкоскоростные – на линии D-, что позволяет определить тип подключенного устройства USB. Когда устройство USB не управляет линиями D+ и D-, то на линии с R Н имеется напряжение около 3В, а на другой – близкое к 0В. Такое состояние шины называется пассивным состоянием.

Рис.7.10. Схемы сопряжения ПП хоста (хаба) и функционера (хаба) для высокоскоростной (а) и низкоскоростной (б) передач

Если устройство не подключено к нижнему порту хоста (хаба) (или отсутствует питание), то на обоих линиях D+ и D- устанавливается асимметричный низкий уровень напряжения (0,6В), который используется для определения условия рассоединения или сообщения о конце пакета (EOP). Для высокоскоростных передач условием рассоединения является наличие асимметричного нуля в течение 2,5 мс (30 единиц времени передачи бита).

Считается, что связь с устройством установлена, если напряжение на одной из линий D+ (D-) достигает выше асимметричного высокого порога в 1,5В за время 2,5 мс.

Определение факта рассоединения и связанности устройства USB показано на рис.7.11.

Рис.7.11. Установление факта рассоединения (а) и связи устройства USB (б)

Общее время передачи данных оценивается числом битов данных, умноженным на период (Т), определяемый скоростью передачи данных. На рис.7.12 представлена временная диаграмма передачи данных по дифференциальным линиям данных D+ и D-.

Рис.7.12. Временная диаграмма передачи данных

В соответствии с кодом NRZI бит 0 вызывает переключение уровней напряжения, а бит 1 сохраняет соответствующие уровни напряжения на линиях D+ и D-. Длительность асимметричного нуля в EOP равна 2Т без учета времени задержки.

Начало пакета (SOF) определяется первым битом поля синхронизации, когда пассивное состояние линий D+ и D- переходит в активное. Устройства USB поддерживают режим приостановки, который вызывается тем, что пассивное состояние линий D+ и D- удерживается более 3 мс.

Командой хоста может быть установлен сигнал сброса, который распространяется через все хабы и приводит подключенные устройства в начальное состояние. Сигналом сброса является асимметричный нуль, удерживаемый на шине в течение 10 мс.

В зависимости от источника потребления питания различают следующие типы устройств:

Хабы, получающие питание от шины и обеспечивающие питанием внутренние функциональные устройства и низшие порты;

Хабы с автономным питанием, которые позволяют снабдить питанием пять модулей, каждый из которых потребляет 100 мА, составляющие нагрузку модуля;

Маломощные (с нагрузкой одного модуля) и высокомощные (с нагрузкой пяти модулей) устройства, потребляющие питание из шины;

Функциональные устройства, имеющие внешний источник питания и обладающие нагрузкой одного модуля, питаемого из шины.

Рассмотрим форматы пакетов, определяемых стандартом шины USB. Различают опознавательные, информационные пакеты и пакеты квитирования. Каждому пакету предшествует передача 8-битного поля синхронизации. Формат опознавательного пакета изображен на рис. 7.13.

Рис.7.13. Формат опознавательного пакета

Вслед за полем синхронизации для каждого пакета передается 8-битный идентификатор (ИД) младшим битом вперед. Биты D0-D3 поля ИД задают тип пакета (формат и способ обнаружения ошибок соответствующего пакета), а биты D4-D7 являются инверсными значениями младших четырех битов и служат в качестве поля проверки правильности передачи поля ИД, которые делятся на опознавательные, информационные, квитирования и специальные.

Для выбора устройства и конечной точки (КТ) в нем используется 7-битный адрес устройства и 4-битный номер КТ. Поле адреса предназначено для ввода (вывода) данных и установочных опознавателей. При сбросе или отключении питания адрес устройства принимает значение 0 и затем программируется хостом. Низкоскоростные устройства содержат до двух точек, а высокоскоростные – до 16 конечных точек. Поле адреса и номера КТ защищены 5-битовым контрольным циклическим кодом (КЦК). Циклический избыточный контроль состоит в том, что биты поля КЦК представляют собой коэффициенты двоичного полинома (5-битовый эквивалент), а байты контроля ошибок получаются путем деления этого полинома на заданный 16-битный полином. По двоичному коду остатка определяют наличие или отсутствие ошибки.

Пакет поля данных состоит из 8-битного поля ИД, поля данных (0-1023 байтов) и 16-битного поля КЦК (рис.7.14).

Рис.7.14. Формат пакета данных

Существует два пакета данных (Данные(0) и Данные(1)) с различными идентификаторами, необходимые для поддержания соответствующей синхронизации. Данные в пакете представлены в виде последовательности байтов.

Пакет квитирования содержит только поле ИД и предназначен для проверки успешности передачи данных. Различают три типа этого пакета: ACK (подтверждение) – пакет данных получен без ошибок и пакет ИД верен (пакет применяется при передаче данных); NAK (неподтверждение) – пакет, показывающий на невозможность устройством принять данные от хоста (временный отказ) или устройство не имеет данных для передачи хосту (кроме того, пакет используется для сообщения о временной паузе в передаче или приеме данных устройством); STALL – ответный пакет, говорящий о постоянном отказе и необходимости вмешательства программы хоста.

Опознавательный пакет SOF (начало фрейма) позволяет хабам или устройствам идентифицировать начало фрейма и синхронизировать их внутренние таймеры с таймером главной ЭВМ. Формат опознавательного пакета показан на рис.7.15.

Рис.7.15. Формат опознавательного пакета

Фрейм состоит из ряда транзакций (действий на шине), имеющих начало от одного SOF-маркера, и продолжается до начала следующего SOF-маркера. Устройство или хаб определяют начало фрейма по 8-битному ИД SOF-пакета.

Существуют следующие транзакции: массива данных, управления, прерывания и изохронного типа.

Транзакция массива данных при вводе данных в хост состоит из опознавательного пакета с запросом ввода, пакета данных (Данные (0/1)) из устройства и пакета квитирования (NAK или STALL), посылаемого устройством вслед за данными. Если пакет данных принят верным, то хост отвечает устройству пакетом ACK.

При вводе данных из хоста в устройство хост направляет опознавательный пакет с запросом вывода, а затем пакет данных. Устройство отвечает хосту одним из трех пакетов квитирования (ACK, NAK или STALL).

Последовательность действий хоста и устройства при передачи массивов данных показана на рис.7.16.

Рис.7.16. Последовательность действий хоста и устройства

На рис.7.17 представлена последовательность идентификаторов при записи и чтении массива данных.

Рис.7.17. Последовательность идентификаторов при записи и чтении массива данных

С целью синхронизации компонентов шины USB выполняется чередование пакетов с идентификатором Данные(0) и пакетов с идентификатором Данные(1). Переключение пакетов данных в передатчике выполняется после получения пакета квитирования ACK, а в приемнике – после получения очередного пакета.

Переходы управления содержат две стадии: Установка и Состояние, между которыми может присутствовать информационная стадия. Во время стадии Установки выполняется передача данных только с форматом поля ИД Данные(0) к конечной точке управления устройства.

Транзакция Установки изображена на рис.7.18.

Рис.7.18. Транзакция Установки

Сигнал квитирования ACK не выдается, если данные являются неверными. При наличии стадии данных выполняется их передача в одном направлении в соответствии с требованиями протокола. Эта стадия может состоять из нескольких транзакций ввода и вывода и размер массива данных задается в пакете Установка.

Стадия Состояния является последней в рассматриваемой последовательности и использует идентификатор Данные 0.

На рис.7.19 показана очередность транзакций и идентификаторов данных для управления чтением или записью.

Рис.7.19. Очередность транзакций и ИД данных

В стадии Состояние от устройства к хосту передается следующая информация: устройство выполнило задачу (ACK), устройство не содержит ошибок (STALL) и устройство занято (NACK).

Транзакции прерываний содержат опознаватели ввода. На рис.7.20 изображены последовательности транзакций прерываний.

Рис.7.20. Последовательности транзакций прерываний

Если устройство получает опознаватель ввода, то оно выдает данные по прерыванию в виде пакета и получает ACK или передает NACK/STALL. Пакет квитирования NAK направляется устройством, когда оно не содержит информации для нового прерывания, а пакет квитирования STALL – устройством, если оно временно приостановило работу.

Изохронные транзакции не имеют стадии квитирования. На рис.7.21 представлены стадии изохронных транзакций.

Рис.7.21. Стадии изохронных транзакций

При выполнении изохронного режима меняется поочередно пакеты данных с соответствующими идентификаторами, т.е. сначала следует пакет данных Данные(0), а за ним – пакет Данные(1) и т.д.

Предыдущая

Шина USB

Посмотрите на заднюю стенку своего аппарата. Вы увидите там множество всяких разъемов: последовательные и параллельный порты, разъемы для подключения джойстика, колонок, клавиатуры, мыши и еще множество других. Такое изобилие не есть очень хорошо, так как, во-первых, это не сказывается положительно на стоимости материнской платы (незначительно, конечно, но все-таки), а, во-вторых (что более важно) создает некоторые трудности для подключения внешней перифирии. В самом деле, если человек никогда не видел компьютера, а тут ему стало нужно подключить мышь, то он просто не будет знать, куда ее вставлять. Кроме того, программное обеспечение должно поддерживать все эти стандарты, а это только зря усложняет его (обеспечение), и создает дополнительные трудности для установки драйверов, настройки и т. п. Конечно, для знающего пользователя все это мелочи, но весь компьютерный мир стремится сделать "easy PC", то есть когда пришел, поставил, воткнул, включил, загрузил и играй в Unreal Tournament, а все остальное сделается само. Да и, как уже говорилось, не все же знают, куда же надо мышку пихать, а без мышки, сами понимаете, Unreal не Unreal. Кстати, тут я полностью разделяю позицию производителей железа - пользователь должен использовать компьютер, а не возиться со всякими прерываниями, разъемами и проч., потому что даже если все это и не составляет особого труда, то все равно очень неприятно. И все эти проблемы, как вы наверное, уже догадались, "должна решить шина USB". Поэтому перейдем сразу к делу.

Шина USB (Universal Serial Bus ) - универсальная шина, предназначенная для легкого и быстрого подключения периферийных устройств. Стандарт разработали семь компаний: Compaq, Digital Equipment, IBM, Intel, Microsoft, NEC и Northern Telecom. USB-шнур представляет собой две скрученные пары: по одной паре происходит передача данных в каждом направлении (дифференциальное включение), а другая есть линия питания (+5 V). Благодаря встроенным линиям питания, обеспечивающим ток до 500 мА, USB часто позволяет применять устройства без собственного блока питания (если эти устройства потребляют ток силой не более 500 мА).

К одному компьютеру можно подсоединить до 127 устройств через цепочку концентраторов (они используют топологию звезда). Причем эти устройства могут быть самыми разными - начиная от клавиатуры с мышью и кончая сканерами и цифровыми камерами. Представьте себе принтер, сканер, клавиатуру, колонки, джойстик и еще десяток мышек, подключенных сразу к одному порту и еще одновременно работающих! Правда, нужно сделать небольшое уточнение: все эти устройства для эффективной работы должны иметь в своем расоряжении необходимую им полосу пропускания, а она ограничена 12-ю мегабитами, которые может дать USB, то есть один сканер с хорошим принтером сожрут больше, а тут еще и колонки, и модем и что угодно. Иначе говоря, работать то оно будет, но получится ситуация, как в том анекдоте: "А теперь попробуем со всем этим взлететь". Я бы не рекомендовал на один USB-разъем (системные платы имеют два и более разъема) вешать слишком много скоростных устройств, которые предполагается использовать одновременно. Кстати, все эти мышки и модемы потребляют определенный ток, который поставляется шиной (если устройство не имеет собственного блока питания), а он не должен превысить максимального значения, что тоже снижает 127 до некоторого другого, значительно меньшего числа.

Передача данных по шине может осуществляться как в асинхронном, так и в синхронном режиме. В USB обмен информации с быстрыми устройствами идет на скорости 12 Мbits/s, а с медленными - 1.5 Мbits/s. Все подключенные к USB-устройства конфигурируются автоматически (PnP) и допускают Hot-Swap включение/выключение (без перезагрузки или выключения компьютера). Достигается это следующим образом. При подключении кабеля к USB-разъему контроллер USB-контроллер чувствует скачок напряжения и подает соответствующий сигнал операционной системе, а она загружает драйвер, который и обеспечивает работу устрйства на программном уровне. Или, если драйвер не был установлен, система, видя это безобразие, опознает устройство и самостоятельно или с помощью пользователя ставит необходимые драйвера. При дальнейшем включении/выключении этого устройство инициализация происходит, как описано в первом случае. Во время опознавания на экране появляется соответствующее сообщение, а изменения в Device Manager"е происходят автоматически. Устройство также сообщает информацию о его типе, производителе, назначении и требуемой пропускной способности. Ему назначается уникальный идентификационный номер. Это все, что нужно, никаких вопросов об IRQ, адресах портов и DMA больше не будет. Правда, одно прерывание все же нужно - для самого контроллера USB.

Для взаимодействия устройств используется вышеупомянутый кабель, имеющий на концах разъемы, напоминающие телефонные. Существует два вида разъемов: разем типа "А" и разем типа "B". Как правило, устройство подключается к кабелю одним разъемом (B), а другим к USB-порту (A). Устройства можно подключать по цепочке, для этого они могут иметь дополнительный порт для подключения кабеля, идущего на следующее устройство. Однако это не всегда так. Поэтому существуют специальные USB-хабы, подключаемые к порту USB и делящих его на несколько. Есть хабы с блоком питания, они позволяют в некоторой степени обойти ограничение на электрическую нагрузку. На рисунке слева приведен внутренний хаб, вставляющийся в 5" отсек и соединяющийся с USB-портом внешним кабелем, выходящим наружу из задней стенки PC. Наб является обычным USB-устрйством, поэтому их количество может быть более одного; их тоже можно включать в цепочку. Старые компьютеры, не имеющие USB (сейчас USB-контроллер встраивается непосредственно в чипсет), можно оснастить картой типа PCI to USB.

В отличие от чуть ли не всей компьютерной индустрии, когда еще далеко до принятия стандарта, а устройства, поддерживающие его, уже вовсю продаются на рынке, с шиной USB все получилось наоборот. Стандарт был принят аж в 1995-м году, а в 1997-м еще никто толком не мого объяснить, что такое USB. Причина - поддержка (точнее ее отсутствие) со стороны программного обеспечения. Здесь производители устройств ждали, пока Microsoft выпустит ОС с поддержкой USB, а Microsoft в свою очередь заявляла: зачем делать новую систему, когда USB-устройства можно пересчитать по пальцам. К тому же Windows 95 все же может работать с USB, пусть и плохо. Получился в своем роде замкнутый круг. Но в 1998-м году фирма Microsoft напряглась и сделала наконец-то операционную систему с более или менее полноценной поддержкой USB (имеется ввиду Windows 98). Естественно, в последующих версиях систем от дядюшки Билли эта поддержка сохранилась. И тут устройства USB начали появляться словно грибы после дождя. Так что сейчас практически вся периферия имеет USB-варианты, а очень большое количество устройств и вовсе делается только под эту шину. Более подробную информацию о том, что можно подключить к USB, можно найти на http://www.allusb.com/ .

Теоретически к шине USB можно подключить все что угодно - хоть жесткий диск или систему видеомонтажа. Такие устройства даже существуют (смотрите, например, фотографию конвертера ниже) и покупаются. Но это уже, как говориться, попытка совместить несовместимое. Все упирается в максимальную пропускную способность шины. Ее хватает только для передачи видео очень посредственного качества. Жесткий диск тоже будет сильно притормаживать, так как 12 мегабит для жесткого диска, сами понимаете, не скорость. Единствнная область, где ему можно найти применение, это роль "большой дискеты" или использование в качестве второго диска большой емкости в портативном компьютере, но уж писать высококачественный AVI-файл в реальном времени на такой арегат никак не получится. Правда, на подходе USB 2.0, где скорость будет намного увеличена.

В последнее время Microsoft вместе с Intel и другими компаниями всюду продвигают идею компьютера, в котором чего-либо нет. И если в 1999-м под горячую руку попала ISA , то теперь в компьютере "не должно быть никаких последованельных, параллельных или PS/2 портов". Все это хозяйство должна заменить USB. Вполне возможно, что в скорем времени именно так и случится - уже практически убрана ведь из РС поддержка ISA. Ну да ладно, бог с ней, в общем, с ISA, - не велика потеря. Сейчас все современые устройства поставляются в PCI-варианте, а для ISA уже мало что хорошего осталось, а если у кого-то и осталось что-то любимое, то можно найти современную плату со слотами ISA и работать себе в Windows 98, а если очень хочется чего-то посовременнее, то можно потратить деньги и заменить устройства на новые, а денег хватит, потому что для работы современными приложениями (иначе зачем тогда современное железо?) нужен не самый дешевый компьютер, и если хватило на компьютер, то хватит и на тот же FM-тюнер для PCI. Мы же обсуждаем USB. Тут ситуация такая же, как и с ISA в свое время, но только сейчас она актуальней. Ну с какой стати кто-то захочет менять свою дорогую и любимую мышь с PS/2 на USB, пусть даже она плавней ползает? А модем, который вот уже сколько гигабайт перекачал из интернета и еще с не меньшим успехом может перекачать столько же? Ну с принтерами еще ладно, все нормальные современные принтеры могут работать как и с LPT, так и с USB. Но отдавать лишние деньги за чисто альтернативные устройства для USB мало кто захочет, так как те же клавиатуры с мышами стоят дороже долларов на 10-20, чем точно такие же, но "не USB".

Но, тем не менее, по моему, если вы покупаете что-нибудь новое, то внимание на USB все же стоит обратить в первую очередь. Во первых, для некоторых устройств (принтеров, сканеров, причем цена последних, кстати, зачастую даже ниже в USB-варианте) USB дает прирост призводительности вследствие большей пропускной способности. С другой стороны, вы получате удобство пользования и, возможно, некоторые дополнительные возможности. В-третьих, становитесь обладателем современного устройства, а не всякого там антиквариата. Я полностью согласен с концепцией необходимости полного перехода USB, предлагаемой некоторыми фирмами, - нужно избавляться от технологий каменного века.


Стандарты USB 1.1 и 2.0

Универсальная последовательная шина USB (Universal Serial Bus) является еще одним последовательным интерфейсом. Поскольку это самый популярный последовательный интерфейс, то он заслуживает отдельной главы.

Шина USB позволяет последовательное подсоединение до 127 устройств (вы можете подключать устройство к устройству, если производитель устройства предусмотрел такую возможность). Как и в случае с IEEE, поддерживается «горячее» отключение/подключение устройств, то есть вам для подключения/отключения устройства не нужно выключать питание компьютера. Более того, как и в случае с IEEE, устройства могут получать питание по шине USB, что позволяет обходиться без дополнительных блоков питания.

Шина USB появилась в январе 1996 года – тогда была анонсирована версия USB 1.0. Два года спустя, в 1998 году, появилась шина USB 1.1. Практически все устройства версии 1.0 совместимы с USB 1.1, и наоборот – просто изменения были незначительные.

Шина USB 2.0 появилась в 2003 году. Она обратно совместима с версиями 1.0 и 1.1. Это означает, что к шине USB 2.0 можно подключить устройства версии 1.0 и 1.1. Определить версию устройства очень легко – по логотипу USB. На рис. 10.1 изображен логотип USB версий 1.0 и 1.1 (сейчас чаще встречается устройство версии 1.1), а на рис. 10.2 – логотип USB 2.0.

Рис. 10.1. Логотип usb 1.1: старый (слева) и новый (справа)

Рис. 10.2. Логотип usb 2.0

Технические характеристики шины USB 1.1 приведены в табл. 10.1.
//-- Таблица 10.1. Технические характеристики шины USB1.1 --//


Обратите внимание, что шина USB 1.1 может работать в двух режимах: в низкоскоростном и высокоскоростном. В первом скорость обмена составляет 1,5 Мбит/с, во втором – 12 Мбит/с.
Технические характеристики шины USB 2.0 практически такие же, но для USB 2.0 предусмотрено три скоростных режима:
Low-speed (скорость 10–1500 Кбит/c) – для устройств ввода (клавиатуры, мыши, джойстиков);
Full-speed (0,5–12 Мбит/с) – различные среднескоростные устройства;
Hi-speed (5–480 Мбит/с) – носители данных, видеоустройства.

Подключение USB-устройств

На задней стенке системного блока обычно можно обнаружить четыре USB-порта (иногда 6 или даже 8). Данные порты (рис. 10.3) принадлежат к корневым концентраторам USB. У каждого корневого концентратора есть два USB-порта. Следовательно, если у вас на системной плате четыре USB-порта, то всего в системе два корневых концентратора, если восемь портов – в системе четыре корневых концентратора.

//-- Рис. 10.3. USB-порты --//
Откройте Диспетчер устройств (для этого выполните команду Пуск, Настройка, Панель управления, Система, перейдите на вкладку Оборудование и нажмите кнопку Диспетчер устройств). В окне Диспетчера устройств раскройте группу Контроллеры универсальной последовательной шиныUSB (рис. 10.4).

//-- Рис. 10.4. Диспетчер устройств --//
Щелкните правой кнопкой по любому корневому концентратору и выберите команду Свойства. В появившемся окне перейдите на вкладку Питание. Вы увидите следующую информацию (рис. 10.5):
тип питания концентратора – наш концентратор корневой, поэтому имеет свое собственное питание;
информацию о подключенных к портам концентратора устройствах и об их питании – в нашем случае подключено одно устройство и оно требует питания в 100 мА. Максимум наш концентратор может передать до 500 мА на порт;
количество свободных портов – у корневого концентратора всего два порта, один из них занят (подключено запоминающее устройство – USB-диск), поэтому свободен один порт.

//-- Рис. 10.5. Подробная информация о концентраторе --//
Если у вас всего два концентратора и к каждому можно подключить всего два устройства, то как, спрашивается, можно подключить к компьютеру до 127 USB-устройств? Во-первых, к портам корневого концентратора вы можете подключить дополнительные USB-концентраторы (рис. 10.6). USB-концентратор подключается к USB-порту, но взамен предоставляет как минимум три свободных USB-порта. Бывают два типа USB-концентраторов: с собственным питанием и с питанием от родительского порта. Лучше покупать концентраторы с собственным питанием. Почему? Как мы знаем, на один порт передается сила тока максимум 500 мА; 100 мА потребуется для питания самого концентратора, поэтому для устройств останется 400 мА. Выходит, что к каждому порту такого концентратора вы уже не сможете подключить какое-либо мощное USB-устройство, а сможете подключать устройства вроде USB-дисков, которым необходимо всего 100 мА.

//-- Рис. 10.6. USB-концентратор --//
Если же концентратор будет обладать собственным питанием, то можно будет обеспечить по 500 мА на каждый порт, то есть USB-порты будут полноценными, как на корневых концентраторах.
Кроме того, некоторые устройства, например клавиатура, могут выступать в роли USB-концентратора (данные устройства должны быть USB-устройствами). Вы подключаете клавиатуру к USB-порту, а к ней можно подключить еще несколько устройств. Обычно к клавиатуре подключают USB-мыши и иногда USB-дис-ки. Понятно, что данные устрой ства должны быть не «обжорливыми», поскольку всего на порт подаются те самые 500 мА; 100 мА уходит на питание клавиатуры, а остальное делится между подключенными к клавиатуре устройствами. Учитывая такое иерархическое подключение устройств, несложно себе представить всего 127 подключенных к компьютеру устройств. Это же не 63 000, как в случае с IEEE-1394!
Теперь о разъемах USB. Разъемы, имеющиеся на задней стенке системного блока (самые обычные USB-разъемы), называются USB типа А. Кабель для разъема типа А изображен на рис. 10.7.

//-- Рис. 10.7. Кабель типа А --//
Разъем и кабель типа B изображены на рис. 10.8. Обычно разъем типа B используется на периферийных устройствах (принтерах, сканерах). USB-кабель для подключения периферийного устройства к компьютеру (рис. 10.9) оснащен разъемом типа B (для подклю че-ния к прин теру/сканеру) и разъемом типа A (для подключения к компьютеру).

//-- Рис. 10.8. Разъем (гнездо) и кабель типа B --//
//-- Рис. 10.9. Кабель для подключения USB-принтера --//
Кроме разъемов типа A и B, есть еще мини-разъем, который так и называется – mini-USB (рис. 10.10). Обычно он используется для подсоединения USB-кабеля к цифровому фотоаппарату, мобильному телефону. При этом один конец кабеля – mini-USB, а второй – типа A.

//-- Рис. 10.10. Кабель mini-USB --//

Модернизация старых компьютеров

На старых компьютерах нет USB-портов, но можно установить USB-кон-троллер, выполненный в виде PCI-платы расширения (рис. 10.11) или в виде PC-карты (для ноутбуков). При покупке контроллера убедитесь, что он поддер живает USB 2.0 (рис. 10.12) – если ставить, то самое новое.

//-- Рис. 10.11. USB-контроллер в виде PCI-платы (4 USB-порта) --//

//-- Рис. 10.12. Двухпортовая РС-карта (добавляет поддержку USB в старый ноутбук) --//
Иногда компьютер не очень старый – поддержка USB есть, но версии 1.1, а нужно подключить устройство USB 2.0. В этом случае тоже поможет PCI-контроллер. Еще раз повторюсь: при покупке нужно убедиться, что вы покупаете именно контроллер USB 2.0.

В настоящее время стандарт USB 3.0 еще не принят, но уже находится на стадии разработки. Предполагается, что он будет передавать сигналы с помощью оптоволоконного кабеля. USB 3.0 будет обратно совместим с версиями 2.0 и 1.1.
Сейчас над созданием USB 3.0 работают следующие компании: Intel, Microsoft, Hewlett-Packard, Texas Instruments, NEC и NXP Semiconductors. Планируемая скорость передачи данных (пиковая) – 4,8 Гбит/с.

Поддерживает ли ваша система USB

Казалось бы, если есть USB-порты, то и поддержка USB тоже должна быть. Но это не всегда так. Например, в Windows 2000 и в Windows XP SP1 нет драйвера для USB 2.0. Даже если у вас контроллер USB 2.0, то без установки драйвера для USB 2.0 шина USB будет работать как USB 1.1.
Скачайте программу USB Ready по адресу http://www.usb.org/about/ faq/ans3/usbready.exe, которая протестирует вашу систему на предмет наличия поддержки USB (рис. 10.13).

//-- Рис. 10.13. Программа usb ready --//
Что же делать тем, у кого новый USB-контроллер? Есть несколько вариантов:
установить новую версию ОС – Windows Vista, но это стоит не дешево;
обновить версию ОС до Windows XP SP2; установить драйвер USB 2.0.

Далеко не всегда хочется переустанавливать хорошо работающую систему. Тогда будем искать драйвер. Иногда он поставляется вместе с материнской платой – тогда вам повезло. Но если его в комплекте нет, тогда будем искать его в Интернете. Самое интересное, что на сайте Microsoft его уже нет. Я нашел нужный драйвер на сайте softodrom.ru:
http://soft.softodrom.ru/ap/p4515.shtml.
Если к моменту выхода книги из печати его там уже не будет, обращайтесь ко мне – я поделюсь им с вами.

USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства (devices) могут являться хабами, функциями или их комбинацией. Устройство-хаб (hub) только обеспечивает дополнительные точки подключения устройств к шине. Устройство-функция (function) USB предоставляет системе дополнительные функциональные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Комбинированное устройство (compound device), содержащее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Работой всей системы USB управляет хост-контроллер (host controller), являющийся программно-аппаратной подсистемой хост-компьютера. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств. Шина USB является хостцентрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства - исключительно ведомые. Физическая топология шины USB - многоярусная звезда. Ее вершиной является хост-контроллер, объединенный с корневым хабом (root hub), как правило, двухпортовым. Хаб является устройством-разветвителем, он может являться и источником питания для подключенных к нему устройств. К каждому порту хаба может непосредственно подключаться периферийное устройство или промежуточный хаб; шина допускает до 5 уровней каскадирования хабов (не считая корневого). Поскольку комбинированные устройства внутри себя содержат хаб, их подключения к хабу 6-го яруса уже недопустимо. Каждый промежуточный хаб имеет несколько нисходящих (downstream) портов для подключения периферийных устройств (или нижележащих хабов) и один восходящий (upstream) порт для подключения к корневому хабу или нисходящему порту вышестоящего хаба. Логическая топология USB - про¬сто звезда: для хостконтроллера хабы создают иллюзию непосредственного подключения каждого устройства. В отличие от шин расширения (ISA, PCI, PC Card), где программа взаимодействует с устройствами посредством обращений по физическим адресам ячеек памяти, портов ввода-вывода, прерываниям и каналам DMA, взаимодействие приложений с устройствами USB выполняется только через программный интерфейс. Этот интерфейс, обеспечивающий независимость обращений к устройствам, предоставляется системным ПО контроллера USB.

В отличие от громоздких дорогих шлейфов параллельных шин AT А и особенно шины SCSI с ее разнообразием разъемов и сложностью правил подключения, кабельное хозяйство USB простое и изящное. Кабель USB содержит одну экранированную витую пару с импедансом 90 Ом для сигнальных цепей и одну неэкранированную для подачи питания (+5 В), допустимая длина сегмента - до 5 м. Для низкой скорости может использоваться невитой неэкранированный кабель длиной до 3 м (он дешевле). Система кабелей и коннекторов USB не дает возможности ошибиться при подключении устройств (рис. 13.1, а и б). Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение (рис. 13.1, в). Гнезда типа «А» устанавливаются только на нисходящих портах хабов, вилки типа «А» - на шнурах периферийных устройств или восходящих портов хабов. Гнезда и вилки типа «В» используются только для шнуров, отсоединяемых от периферийных устройств и восходящих портов хабов (от «мелких» устройств - мышей, клавиатур и т. п. кабели, как правило, не отсоединяются). Кроме стандартных разъемов, показанных на рисунке 19, применяются и миниатюрные варианты (рис. 20, в, г, д). Хабы и устройства обеспечивают возможность «горячего» подключения и отключения. Для этого разъемы обеспечивают более раннее соединение и позднее отсоединение питающих цепей по отношению к сигнальным, кроме того, предусмотрен протокол сигнализации подключения и отключения устройств. Назначение выводов разъемов USB приведено в табл. 9, нумерация контактов показана на рис. 20. Все кабели USB «прямые» - в них соединяются одноименные цепи разъемов.


Рис. 19. Коннекторы USB: a - вилка типа «А», б - вилка типа «В», в - символическое обозначение

Рис. 20. Гнезда USB: а - типа «А», б - типа «В» стандартное, в,г,д - миниатюрные типа «В»

Таблица 9. Назначение выводов разъема USB

В шине используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Скорость устройства, подключенного к конкретному порту, определяется хабом по уровням сигналов на линиях D+ и D-, смещаемых нагрузочными резисторами приемопередатчиков: устройства с низкой скоростью «подтягивают» к высокому уровню линию D-, с полной - D+. Подключение устройства HS определяется на этапе обмена конфигурационной информацией - физически на первое время устройство HS должно подключаться как FS. Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника, каждое устройство имеет линейные приемники сигналов D+ и D-, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса.

Введение высокой скорости (480 Мбит/с - всего в 2 раза медленнее, чем Gigabit Ethernet) требует тщательного согласования приемопередатчиков и линии связи. На этой скорости может работать только кабель с экранированной витой парой для сигнальных линий. Для высокой скорости аппаратура USB должна иметь дополнительные специальные приемопередатчики. В отличие от формирователей потенциала для режимов FS и LS, передатчики HS являются источниками тока, ориентированными на наличие резисторов-терминаторов на обеих сигнальных линиях.

Скорость передачи данных (LS, FS или HS) выбирается разработчиком периферийного устройства в соответствии с потребностями этого устройства. Реализация низких скоростей для устройства обходится несколько дешевле (приемопередатчики проще, а кабель для LS может быть и неэкранированной невитой парой). Если в «старой» USB устройства можно было, не задумываясь, подключать в любой свободный порт любого хаба, то в USB 2.0 при наличии устройств и хабов разных версий появились возможности выбора между оптимальными, неоптимальными и неработоспособными конфигурациями.

Хабы USB 1.1 обязаны поддерживать скорости FS и LS, скорость подключенного к хабу устройства определяется автоматически по разности потенциалов сигнальных линий. Хабы USB 1.1 при передаче пакетов являются просто повторителями, обеспечивающими прозрачную связь периферийного устройства с контроллером. Передачи на низкой скорости довольно расточительно расходуют потенциальную пропускную способность шины: за то время, на которое они занимают шину, высокоскоростное устройство может передать данных в 8 раз больше. Но ради упрощения и удешевления всей системы на эти жертвы пошли, а за распределением полосы между разными устройствами следит планировщик транзакций хост-контроллера.

В спецификации 2.0 скорость 480 Мбит/с должна уживаться с прежними, но при таком соотношении скоростей обмены на FS и LS «съедят» возможную полосу пропускания шины без всякого «удовольствия» (для пользователя). Чтобы этого не происходило, хабы USB 2.0 приобретают черты коммутаторов пакетов. Если к порту такого хаба подключено высокоскоростное устройство (или аналогичный хаб), то хаб работает в режиме повторителя, и транзакция с устройством на HS занимает весь канал до хост-контроллера на все время своего выполнения. Если же к порту хаба USB 2.0 подключается устройство или хаб 1.1, то по части канала до контроллера пакет проходит на скорости HS, запоминается в буфере хаба, а к старому устройству или хабу идет уже на его «родной» скорости FS или LS. При этом функции контроллера и хаба 2.0 (включая и корневой) усложняются, поскольку транзакции на FS и LS расщепляются и между их частями вклиниваются высокоскоростные передачи. От старых (1.1) устройств и хабов все эти тонкости скрываются, что и обеспечивает обратную совместимость. Вполне понятно, что устройство USB 2.0 сможет реализовать высокую скорость, только если по пути от него к хост-контроллеру (тоже 2.0) будут встречаться только хабы 2.0. Если это правило нарушить и между ним и контроллером 2.0 окажется старый хаб, то связь может быть установлена только в режиме FS. Если такая скорость устройство и клиентское ПО устроит (к примеру, для принтера и сканера это выльется только в большее время ожидания пользователя), то подключенное устройство работать будет, но появится сообщение о неоптимальной конфигурации соединений. По возможности ее (конфигурацию) следует исправить, благо переключения кабелей USB можно выполнять на ходу. Устройства и ПО, критичные к полосе пропускания шины, в неправильной конфигурации работать откажутся и категорично потребуют переключений. Если же хост-контроллер старый, то все преимущества USB 2.0 окажутся недоступными пользователю. В этом случае придется менять хост-контроллер (менять системную плату или приобретать PCI-карту контроллера). Контроллер и хабы USB 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к раз¬ным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропускная способность шины USB возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов.

Хаб является ключевым элементом системы PnP в архитектуре USB. Хаб выполняет множество функций:

  • обеспечивает физическое подключение устройств,

формируя и воспринимая

  • сигналы в соответствии со спецификацией шины на

каждом из своих портов;

  • управляет подачей питающего напряжения на

нисходящие порты, причем предусматривается установка ограничения на ток, потребляемый каждым портом;

  • отслеживает состояние подключенных к нему устройств,

уведомляя хост об изменениях;

  • обнаруживает ошибки на шине, выполняет процедуры

восстановления и изолирует неисправные сегменты шины;

  • обеспечивает связь сегментов шины, работающих на

разных скоростях.

Хаб следит за сигналами, генерируемыми устройствами. Неисправное устройство может не вовремя «замолчать» (потерять активность) или, наоборот, что-то «бор¬мотать» (babble). Эти ситуации отслеживает ближайший к устройству хаб и за¬прещает восходящие передачи от такого устройства не позже, чем по границе (микро)кадра. Благодаря бдительности хабов эти ситуации не позволят неисправному устройству заблокировать всю шину.

Каждый из нисходящих (downstream) портов может быть разрешен или запрещен, а также сконфигурирован на высокую, полную или ограниченную скорость обмена. Хабы могут иметь световые индикаторы состояния нисходящих портов, управляемые автоматически (логикой хаба) или программно (хост-контроллером). Индикатор может представлять собой пару светодиодов - зеленый и желтый (янтарный) или один светодиод с изменяющимся цветом. Состояние порта представляется следующим образом:

  • не светится - порт не используется;
  • зеленый - нормальная работа;
  • желтый - ошибка;
  • зеленый мигающий - программа требует внимания

пользователя (Software attention);

  • желтый мигающий - аппаратура требует внимания

пользователя (Hardware attention).

Восходящий (upstream) порт хаба конфигурируется и внешне представляется как полноскоростной или высокоскоростной (только для USB 2.0). При подключении порт хаба USB 2.0 обеспечивает терминацию по схеме FS, в режим HS он переводится только по команде контроллера.

На рис. 13.3 приведен вариант соединения устройств и хабов, где высокоскоростным устройством USB 2.0 является только телекамера, передающая видеопоток без компрессии. Подключение принтера и сканера USB 1.1 к отдельным портам хаба 2.0, да еще и развязка их с аудиоустройствами, позволяет им использовать полосу шины по 12 Мбит/с каждому. Таким образом, из общей полосы 480 Мбит/с на «старые» устройства (USB 1.0) выделяется 3x12=36 Мбит/с. Вообще-то мож¬но говорить и о полосе в 48 Мбит/с, поскольку клавиатура и мышь подключены к отдельному порту хост-контроллера USB 2.0, но эти устройства «освоят» только малую толику из выделенных им 12 Мбит/с. Конечно, можно подключать клавиатуру и мышь к порту внешнего хаба, но с точки зрения повышения надежности системные устройства ввода лучше подключать наиболее коротким (по количеству кабелей, разъемов и промежуточных устройств) способом. Неудачной конфигурацией было бы подключение принтера (сканера) к хабу USB 1.1 - во время работы с аудиоустройствами (если они высокого качества) скорость печати (сканирования) будет падать. Неработоспособной конфигурацией явилось бы подключение телекамеры к порту хаба USB 1.1.

При планировании соединений следует учитывать способ питания устройств: устройства, питающиеся от шины, как правило, подключают к хабам, питающимся от сети. К хабам, питающимся от шины, подключают лишь маломощные устройства - так, к клавиатуре USB, содержащей внутри себя хаб, подключают мышь USB и другие устройства-указатели (трекбол, планшет).

Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабо¬чий ток (не более 500 мА) заявляется в конфигурации. Если хаб не может обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано.

Устройство USB должно поддерживать режим приостановки (suspended mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины.

Рис. 21. Пример конфигурации соединений

Возможность удаленного пробуждения (remote wakeup) позволяет приостановленному устройству подать сигнал хост-компьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена.