Самодельные сирены. Мощная сирена на транзисторах


Звуковая сирена используется в разных местах и для самых разнообразных целей для оповещения о чем-то. Её возможно приспособить к какой-то охранной системе, встроить в игрушку, взять в качестве звонка для двери или еще как-нибудь. Собрав эту несложную однотонную сирену, мы получим громкий и неприятный звук, как раз для того чтобы быстро отреагировать на уведомление.


Несложная принципиальная схема сирены с небольшим количеством деталей ждет вас на рисунке выше. Условно принципиальную схему можно разделить на две части: мультивибратор - усилитель низкой частоты. Мультивибратор занимается тем что генерирует сигнал определенной частоты, а усилитель, в свою очередь, усиливает его. В итоге, получается громкий звук с колебаниями около 2000 Гц.

Мультивибратор у нас генерирует импульсы посредством быстрого открытия/закрытия транзисторов BC547. Частота, в главной мере, связана со значениями ёмкости конденсаторов и частично от базовых резисторов и самих транзисторов. В схеме стандартная ёмкость C1 и C2 = 10 нФ и 22 нФ, при вариации этих номиналов правится и тональность электрической сирены. Получать можно с коллектора любого из транзисторов (VT1/VT2). В данном приборе сигнал идет через резистор далее на каскад УНЧ. Усилитель базируется на двух весьма распространенных биполярных транзисторах BC547 и BD137.

Вот некоторые вычислительные параметры мультивибратора. Частота примерно 959,442 Гц (мультиметр показывает на коллекторе сделанного генератора 1-1,1 кГц), скважность S=1,45, период T=0,000104. Сии сведения могут отличаться в зависимости от применяемых транзисторов, других отклонений в характеристиках радиодеталей... На частоту звучания влияет практически все. Ток, который берет от источника питания схемы может доходить до 0,5 Ампер, при 12 Вольтах.

Схемка и плата в Протеусе (файл ISIS и ARES ): (скачиваний: 212)
Трехмерная плата в 3DS : (скачиваний: 127)




Транзистор структуры NPN из усилителя низкой частоты будет нагреваться при активизации сирены, так что его ставим на теплоотвод, у меня используется мощный и большой C5803.


Теперь про замену некоторых деталей. Тут можно много чего заменить, например, транзисторы в гене берем практически любые (нпн) КТ315, BC548 и КТ3102 – все они будут отлично работать. Аналогом BC327 в этой схеме будет BC558/BC557/КТ3107. BD139 заменяется вообще любим такой же мощностью или больше. Ёмкость конденсаторов будут изменять частоту, тут также выбор велик, экспериментируя подбираем предпочтительный звук. Резисторы могут немного меняться, но помним, что в первой части схемы должно сопротивление R1 и R4 должно быть меньше чем R2, R4.


Воспроизводим звук сирены на любой динамик, который есть, R катушки равно 8-25 Ом. Я пробовал с самыми различными и от радиоприёмника, и от домашнего стационарного телефона. Также попробуйте испытать в качестве излучателя звука пьезоэлемент, к нему обязательно крепим резонатор (можно использовать корпус).
Сильно тихая сирена? Не проблема! Берем готовый УНЧ, к примеру, какую-то тдашку (the digital audio). Их разнообразие поражает, от небольших микросхем в DIP-8 на 1 Ватт, до больших с силой более 100 Ватт. Я бы посоветовал взять что-нибудь средненькое, TDA2003 (до 10W) или TDA2030 (до 18 Ватт). Не забываем смотреть какое питание нужно для того или иного "умощнителя" звука звука.


Внешний вид собранной навесным монтажом сирены:






Питание от 6 до 12 Вольт (с большим тоже отлично функционирует). Мощность на выходе до пяти Ватт. При применении аккумуляторов/батареек получаем автономную сирену, которая сможет работать без сетевого напряжения. Если же давать питание от 220V, то тут берем готовый БП или переделываем зарядку для телефона путем замены стабилитрона на нужное напряжение.

Демонстрация сирены, видео:

На рисунке 1 приведена схема простой двухтональной сирены предназначенной для питания от аккумуляторов напряжением 12 вольт, в частности от автомобильного.

Она содержит три автогенератора: переключающий на элементах DD1.1, DDI.2 (с частотой переключения 1Гц) и два звуковых -на элементах DD1.3, DD1.4 (f=1 кГц) – 1, на элементах DD2.2, DD2.3 (f=500 Гц) — 2. Чтобы звуковые генераторы работали поочередно, управляющие импульсы на второй звуковой генератор поданы с выхода переключающего генератора через инвертор DD2.1. В этом случае, пока напряжение на выходе элемента DD1.2 имеет высокий уровень, возбуждается автогенератор, собранный на элементах DD1.3, DD1.4. Когда же на выходе элемента DD1.2 присутствует низкий уровень, возбуждается автогенератор, реализованный на элементах DD2.2, DD2.3. Импульсы с выходов звуковых генераторов через элемент DD1.4, выполняющий операцию логического сложения, подаются на усилитель звуковой частоты (VT1), нагрузкой которого служит динамическая головка ВА1. Таким образом, динамическая головка ВА1 поочередно воспроизводит два тона 500 Гц и 1 кГц по 0,5 с каждый.

Так как микросхема К561ЛА7 имеет диапазон рабочих напряжений 5…15 вольт, то с помощью резистора R6, изменяя напряжение питания устройства, можно регулировать мощность звукового сигнала, подаваемую на звукоизлучающую головку ВА1. Номинал этого резистора для других напряжений (на схеме указан номинал резистора для напряжения на выходе микросхемы КРЕН8А – 9 вольт) можно рассчитать по формуле 1) на рис.1. Хотя транзистор VT1 работает в ключевом режиме, ему все равно потребуется радиатор, т.к. мощность подводимая к излучателю ВА1, при напряжении питания более 10 вольт, может намного превышать 10Вт, эта мощность во многом зависит и от сопротивления излучателя. Если в качестве нагрузки будет применен излучатель с большим внутренним сопротивлением, то его необходимо включить в коллекторную цепь транзистора.

Микросхема стабилизатора тоже установлена на небольшой радиатор, хотя при больших мощностях звукового сигнала, габариты радиаторов надо будет увеличить, адаптировать при этом и топологию проводников печатной платы, которую можно вместе со схемой скачать здесь.

При подключении схемы к аккумулятору будьте внимательны. Переполюсовка неизбежно приведет к мору микрух. У нас на работе бытовал термин, я извиняюсь – защита ЗОД – защита от дурака (не примите на свой счет), которая состояла: или из последовательно прямовключенного диода (рассчитанного на соответствующий потребляемый ток), или диода включенного параллельно входным клеммам питания устройства, через предохранитель. В первом случае, на диоде будет выделяться бесполезная мощность, а во втором – придется каждый раз, когда вы окажитесь … — менять предохранитель. ШУТКА.

Иногда, в перерывах между собиранием более сложных устройств, появляется желание развлечься и собрать что-нибудь, пусть не имеющее практической пользы, но как предмет, который так, навскидку, можно показать знакомым, на вопрос, что интересного и оригинального собрал.

Схема этой прерывистой сирены очень простая, я нашел её несколько лет назад в интернете, тогда же была спаяна плата и опробована на практике. В основе её лежит генератор на транзисторах VT1 и VT2, собранный по схеме несимметричного мультивибратора. Как она работает: при нажатии на кнопку SB1 раздается звук сирены с все повышающейся тональностью, после отпускания кнопки тональность понижается и сирена замолкает. Тональность звучания можно изменить подбором конденсатора С2, либо взять несколько конденсаторов соединив их последовательно, параллельно или в смешанное соединение. Динамик взял мощностью 0.1 Вт, он стоял раньше в какой-то китайской игрушке. Взять динамик больших размеров не позволял корпус. Плату тогда травить не стал, а изготовил её путем прорезания канавок.


При проверке сирены экспериментировал с разными динамиками, мощностью от 0.1 до 5 Вт, сопротивлением 4-8 Ом, со всеми работало нормально. Напряжение питания подавал 9-11 вольт, можно запитать от "кроны ” либо если удастся найти в продаже 2 последовательно соединенных батарей 3R12 (советское название 3336 ) на 4.5 вольт, последних хватит на дольше.


Также можно запитать от китайского блока питания выдающего 9-12 вольт. Если кто-либо не захочет вручную, кнопкой, задавать тональность звучания, думаю можно подключить заместо кнопки симметричный мультивибратор, тогда в то время, когда транзистор мультивибратора будет открыт, сирена будет звучать, когда транзистор закрыт, соответственно молчать. Вот фото готового устройства:


Конденсаторы поставил пленочные, просто потому, что они у меня были, но и керамические конденсаторы, я думаю, работали бы здесь не хуже. Транзисторы также можно взять любые соответствующей структуры. В ждущем режиме, при замкнутом выключателе SA1, устройство потребляет незначительный ток, что позволяет при желании использовать его в качестве квартирного звонка. При нажатой кнопке SB1 потребляемый ток возрастает до 40 мА. Привожу рисунок печатной платы этой сирены:

состоит из двух генераторов прямоугольных импульсов. Первый генератор собран на элементах DD1.1 и DD1.2. Он генерирует импульсы фиксированной частоты следования (около 0,5 Гц), которая определяется номиналами деталей C1R2. Резистор R1 защищает входы элемента DD1.1 от перегрузки.

К выходу первого генератора подключена интегрирующая цепь R3R4C2, которая формирует пилообразное напряжение, управляющее частотой второго генератора. От номиналов деталей этой цепи зависят скорость нарастания и спада частоты сирены, а от соотношения сопротивлений резисторов R3 и R4 - пределы ее изменения.

Второй генератор - генератор тона сирены. Он выполнен на элементах DD1.3 и DD1.4 по схеме симметричного мультивибратора. Частота следования импульсов генератора и их длительность зависят от номиналов резисторов R5, R6 и конденсаторов СЗ, С4.

Ко второму генератору подключены эмиттерные повторители на транзисторах VT1-VT4. Такое необычное соединение транзисторов напоминает две мостовые схемы, на одни диагонали которых поступает входной сигнал, а к другим подключена динамическая головка ВА1. Подобный каскад позволяет вчетверо увеличить выходную мощность сирены по сравнению с обычным усилителем мощности на эмиттерных повторителях и подключить динамическую головку без оксидного переходного конденсатора.

Рис.1 Схема электронной сирены

В устройстве использованы постоянные резисторы МЛТ-0,125, конденсаторы КМ-6 (C1), К53-1 (С2), КМ-5 (СЗ, С4). Транзисторы могут быть любые другие из указанных на схеме серий. Вместо микросхемы К176ЛА7 подойдет К176ЛЕ5, К561ЛА7, К561ЛЕ5 без каких-либо изменений деталей и печатной платы. Под указанные детали и разработана печатная плата, чертеж которой приведен на рис. 2.

Плату размещают в корпусе собираемой игрушки и соединяют с ней гибкими монтажными проводниками выключатель SAI, источник питания (например батарею 3336) и динамическую головку ВА1 (мощностью 0,1-0,5 Вт со звуковой катушкой сопротивлением 6-10 Ом).



Прежде чем налаживать устройство, временно отключают динамическую головку. Затем подают на сирену питание и проверяют осциллографом работу первого генератора - на выводе 4 элемента DD1.2 должны быть прямоугольные импульсы. После этого наблюдают сигнал (размахом не менее 2 В) пилообразной формы на конденсаторе С2. Далее убеждаются в том, что на выводах 10 и 11 микросхемы есть прямоугольные импульсы, частота следования которых периодически (с частотой примерно 0,5 Гц) изменяется. Такой же сигнал должен быть и на эмиттерах всех транзисторов. Вот теперь можно подключить динамическую головку и использовать сирену по назначению.

Рис.3 Выходной каскад

Если вам понадобится более мощная сирена, соберите дополнительную приставку (рис. 3) и подключите ее вместо динамической головки. А к выходу приставки подключите головку ВА1 соответствующей мощности (можно излучатель от мегафона). Саму сирену, как и прежде, питают от батареи 3336, а приставку - от мощного источника (например от аккумулятора) напряжением 10... 13 В. Транзисторы приставки необходимо установить на радиаторы, площадь которых зависит от требуемой выходной мощности приставки.

В. Корецкий г. Москва

Сирена применяется для звукового оповещения какого-либо процесса. Как правило, сирена раздается при возникновении тревожного события, но радиолюбители используют такие звуки в устройствах различной сигнализации. Тональность и частота такого звука заставит злоумышленников отказаться от нехорошего намерения.

Собирая сирену, мы преследуем еще одну цель – улучшить навыки и опыт в разработке электронных устройств. Поскольку данная схема сирены является довольно простой и под силу даже начинающему радиолюбителю, то мы подробно рассмотрим назначение всех элементов схемы.

Схема сирены

Схема сирены состоит из трех , двух , динамика или громкоговорителя и источника питания напряжением 9 В, в качестве которого подойдет крона. Динамик подойдет мощностью до одного ватта, сопротивлением 8 Ом.

Как работает сирена на двух транзисторах

Кнопкой с фиксацией или маленьким выключателем K1 подается питания от кроны 9 В на схему. Звук в динамике BA возникает за счет протекания по его обмотке переменного напряжения, которое формируется с помощью генератора, построенного на транзисторах VT1 и VT2.

При нажатии кнопки без фиксации K2 от источника питания начинает заряжаться конденсатор C1 по пути через резистор R1. По мере заряда C1 возрастает потенциал на базе VT1 и некотором значении напряжения транзистор открывается, а звук в динамике начинает плавно нарастать. Максимальная громкость сирены достигается при полностью заряженном конденсаторе C1. Время нарастания звука равно времени заряда C1, то есть его емкостью и сопротивлением резистора R1.

При отпускании кнопки K2 начинается разрядка электролитического конденсатора, и громкость сирены начинает снижаться за счет снижения потенциала на базе VT1. Время разряда конденсатора, а соответственно время работы сирены определяется емкостью C1, величиной сопротивления R2 и R3, а также сопротивлением pn-перехода база-эмиттер VT1.

Керамический конденсатор C2 образует обратную положительную связь двух транзисторов. Путем изменения емкости C2 можно изменять тональность сирены на двух транзисторах.